Advertisement

Unscheduled DNA Synthesis as an Indicator of Genotoxic Exposure

  • Ann D. Mitchell
  • Jon C. Mirsalis
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 2)

Abstract

Unscheduled DNA synthesis (UDS),(1) nonsemiconservative repair of damage to DNA, has been shown to occur over the entire genome.(2-4) The process was first revealed by autoradiography when UV irradiation was shown to induce the uptake of labeled thymidine into non-S-phase cells.(5,6) At least three steps are required: adduct formation; excision of the adducts; and DNA-strand polymerization and ligation (Figure 1).(7)

Keywords

Liquid Scintillation Counting Chemical Carcinogen Fair Lawn Nicotinamide Adenine Dinucleotide Phosphate Human Diploid Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Djordevic and L. J. Tolmach, Responses of synchronous populations of HeLa Cells to ultraviolet irradiation at selected stages of the generation cycle, Radiat. Res. 32, 327–346 (1967).CrossRefGoogle Scholar
  2. 2.
    L. Meltz, N. J. Whittam, and W. H. Thornburg, Random distribution of highly repetitive and intermediate frequency mouse L-929 cell DNA sequences synthesized after UV light exposure, Photochem. Photobiol. 27, 545–550 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    M. J. Smerdon and M. W. Lieberman, Nucleosome rearrangement in human chromatin during UV-induced DNA repair synthesis, Proc. Natl. Acad. Sci. USA 75, 4238–4241 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    W. J. Bodell and M. R. Banerjee, The influence of chromatin structure on the distribution of DNA repair synthesis studied by nuclease digestion, Nucl. Acids Res. 6, 359–370 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    R. E. Rasmussen and R. B. Painter, Radiation-stimulated DNA synthesis in cultured mammalian cells, J. Cell Biol. 9, 11–19 (1966).CrossRefGoogle Scholar
  6. 6.
    R. B. Painter and J. E. Cleaver, Repair replication in HeLa cells after large doses of X-irradiation, Nature (London) 216, 369–370 (1967).CrossRefGoogle Scholar
  7. 7.
    J. J. Roberts, the repair of DNA modified by cytotoxic, mutagenic and carcinogenic chemicals, Adv. Radiat. Biol. 7, 211–436 (1978).Google Scholar
  8. 8.
    A. D. Mitchell, D. A. Casciano, M. L. Meltz, D. E. Robinson, R. H. C. San, G. M. Williams, and E. S. von Halle, Unscheduled DNA synthesis tests: A report of the “Gene-Tox” Program, Mutat. Res. 123, 363–410 (1983).PubMedGoogle Scholar
  9. 9.
    E. C. Miller and J. A. Miller, The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanisms of action in carcinogenesis, Chemical Carcinogens, ACS Monograph 173 (C. E. Searle, ed.), pp. 737–762 American Chemical Society, Washington, D.C. (1976).Google Scholar
  10. 10.
    R. E. Rasmussen and R. B. Painter, Evidence for repair of ultraviolet damaged deoxyribonucleic acid in cultured mammalian cells, Nature (London) 203, 1360–1362 (1964).CrossRefGoogle Scholar
  11. 11.
    C. N. Martin, A. C. McDermid, and R. C. Garner, Testing of known carcinogens and noncarcinogens for their ability to induce unscheduled DNA synthesis in HeLa cells, Cancer Res. 38, 2621–2627 (1978).PubMedGoogle Scholar
  12. 12.
    J. E. Trosko and J. D. Yager, A sensitive method to measure physical and chemical carcinogen-induced “unscheduled DNA synthesis” in rapidly dividing eukaryotic cells, Exp. Cell Res. 88, 47–55 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Ide, T. Ishikawa, S. Takayama, and S. Umemura, Autoradiographic demonstration of unscheduled DNA synthesis in oral tissues treated with chemical carcinogens in short-term organ cultures, J. Oral Pathol., 10, 113–123 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    R. H. C. San and H. F. Stich, DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens, Int. J. Cancer 16, 284–291 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    P. K. Gupta and M. A. Sirover, Sequential stimulation of DNA repair and DNA replication in normal human cells, Mutat. Res. 72, 273–284 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    R. D. Snyder and J. D. Regan, DNA repair in normal human and Xeroderma pigmentosum group A fibroblasts following treatment with various methanesulfonates and the demonstration of a long-patch (U.V.-like) repair component, Carcinogenesis 3, 7–14 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    A. J. Rainbow and M. Howes, A deficiency in the repair of UV and gamma-ray damaged DNA in fibroblasts from Cockayne’s Syndrome, Mutat. Res. 93, 235–247 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    I. P. Lee and K. Suzuki, Induction of unscheduled DNA synthesis in mouse germ cells following 1,2-dibromo-3-chloropropane (DBCP) exposure, Mutat. Res. 68, 169–173 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Ishikawa, S. Takayama, and F. Ide, Autoradiographic demonstration of DNA repair synthesis in rat tracheal epithelium treated with chemical carcinogens in vitro, Cancer Res. 40, 2898–2903 (1980).PubMedGoogle Scholar
  20. 20.
    H. L. Gensler, Low level of U.V.-induced unscheduled DNA synthesis in postmitotic brain cells of hamsters: Possible relevance to aging, Exp. Gerontol. 16, 199–207 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Tuschl and H. Altmann, Unscheduled DNA synthesis in lymphocytes of rheumatoid arthritis patients and spleen cells of rats with experimentally induced arthritis, Med. Biol. 54, 327–333 (1976).PubMedGoogle Scholar
  22. 22.
    K. L. Steinmetz and J. C. Mirsalis, Measurement of DNA repair in primary cultures of rat pancreas cells treated with genotoxic agents, Environ. Mutagen. 5, 481 (1983).Google Scholar
  23. 23.
    K. Tatsumi, T. Sakane, H. Sawada, S. Shirakawa, T. Nakamura, and G. Wakisaka, Unscheduled DNA synthesis in human lymphocytes treated with neocarzinostatin, Gann 66, 441–444 (1975).PubMedGoogle Scholar
  24. 24.
    H. J. Freeman and R. H. C. San, Use of unscheduled DNA synthesis in freshly isolated human intestinal mucosal cells for carcinogen detection, Cancer Res. 40, 3155–3157 (1980).PubMedGoogle Scholar
  25. 25.
    G. M. Williams, Carcinogen induced DNA repair in primary rat liver cell cultures; a possible screen for chemical carcinogens, Cancer Lett. 1, 231–236 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    G. S. Probst, R. E. McMahon, L. E. Hill, C. Z. Thompson, J. K. Epp, and S. B. Neal, Chemically-induced unscheduled DNA synthesis in primary rat hepatocyte cultures: A comparison with bacterial mutagenicity using 218 compounds, Environ. Mutagen. 3, 11–32 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Michalopoulos, G. L. Sattler, L. O’Connor, and H. C. Pitot, Unscheduled DNA synthesis induced by procarcinogens in suspensions and primary cultures of hepatocytes on collagen membranes, Cancer Res. 38, 1866–1871 (1978).PubMedGoogle Scholar
  28. 28.
    J. D. Yager and J. A. Miller, DNA synthesis in primary cultures of rat hepatocytes, Cancer Res. 38, 4385–4394 (1978).PubMedGoogle Scholar
  29. 29.
    H. F. Stich and D. Kieser, Use of DNA repair synthesis in detecting Organotropic actions of chemical carcinogens, Proc. Soc. Exp. Biol. Med. 145, 1339–1342 (1974).PubMedGoogle Scholar
  30. 30.
    G. Brambilla, M. Cavanna, P. Carlo, R. Finollo, and S. Parodi, DNA repair synthesis in primary cultures of kidneys from BALB/c and C3H mice treated with dimethylnitrosamine, Cancer Lett. 5, 153–159 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    N. Tanaka and M. Katoh, Unscheduled DNA synthesis in the germ cells of male mice in vivo, Jpn. J. Genet. 54, 405–414 (1979).CrossRefGoogle Scholar
  32. 32.
    T. M. Michel and M. S. Legator, DNA repair synthesis and chromosomal aberrations induced in vivo by triethylenemelamine, Mutat. Res. 24, 41–45 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    M. J. Skinner, B. DeCastro, and J. F. Eyre, Detection of unscheduled DNA synthesis in rat lymphocytes treated in vivo with cyclophosphamide and triethylenemelamine, Environ. Mutagen. 2, 211–278 (1980).Google Scholar
  34. 34.
    J. C. Mirsalis, C. K. Tyson, and B. E. Butterworth, Detection of genotoxic carcinogens in the in vivo-in vitro hepatocyte DNA repair assay, Environ. Mutagen. 4, 553–562 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    C. K. Tyson and J. C. Mirsalis, Measurement of chemically induced DNA repair in rat kidney following in vivo treatment, Environ. Mutagen. 5, 482 (1983).Google Scholar
  36. 36.
    J. C. Mirsalis, T. E. Hamm, J. M. Sherrill, and B. E. Butterworth, Role of gut flora in the genotoxicity of dinitrotoluene, Nature (London) 295, 322–323 (1982).CrossRefGoogle Scholar
  37. 37.
    H. F. Stich and B. A. Laishes, DNA repair and chemical carcinogens, in: Pathobiology Annual (H. L. Ioachim, ed.), pp. 341–376, Appleton-Century Crofts, New York (1973).Google Scholar
  38. 38.
    R. H. C. San and H. F. Stich, DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens, Int. J. Cancer 16, 284–291 (1975).PubMedCrossRefGoogle Scholar
  39. 39.
    D. E. Robinson and A. D. Mitchell, The unscheduled DNA synthesis response of human fibroblasts, WI-38 cells, to 20 coded chemicals, in: Evaluation of Short-Term Tests for Carcinogens (F. J. deSerres and J. Ashby, eds.), pp. 517–527, Elsevier/North-Holland, New York (1981).Google Scholar
  40. 40.
    V. F. Simmon, A. D. Mitchell, and T. A. Jorgenson, Evaluation of Selected Pesticides As Chemical Mutagens, in Vitro and in Vivo Studies, U.S. Environmental Protection Agency Environmental Health Effects Research Series, #EPA-600/1-177-028 (May 1977), pp. 1-5, 12-16, 25-27, and 78-117.Google Scholar
  41. 41.
    V. F. Simmon, D. C. Poole, A. D. Mitchell, and D. E. Robinson, In Vitro Microbiological Mutagnicity and Unscheduled DNA Synthesis Studies of Eighteen Pesticides, SRI International, Menlo Park, CA, Project LSU-3447, Report for the U.S. Environmental Protection Agency (August 1978), pp. 1-4, 11-16, 24-39, and 112-164.Google Scholar
  42. 42.
    V. F. Simmon, E. S. Riccio, D. E. Robinson, and A. D. Mitchell, In Vitro Microbiological Mutagenicity and Unscheduled DNA Synthesis Studies of Fifteen Pesticides, SRI International, Menlo Park, CA, Project LSU-3447, Report for the U.S. Environmental Protection Agency (August 1979), pp. 1-4, 11-16, 25-27, and 103-171.Google Scholar
  43. 43.
    R. H. C. San, W. Stich, and H. F. Stich, Differential sensitivity of Xeroderma pigmentosum cells of different repair capacities towards the chromosome breaking action of carcinogens and mutagens, Int. J. Cancer 20, 181–187 (1977).PubMedCrossRefGoogle Scholar
  44. 44.
    H. F. Stich, O. Hammerberg, and B. Casto, The combined effect of chemical mutagen and virus on DNA repair, chromosome aberrations, and neoplastic transformation, Can. J. Genet. Cytol. 14, 911–917 (1972).Google Scholar
  45. 45.
    H. F. Stich and B. A. Laishes, The response of Xeroderma pigmentosum cells and controls to the activated mycotoxins aflatoxin and sterigmatocystin, Int. J. Cancer 16, 266–274 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    H. F. Stich and R. H. C. San, DNA repair and chromatid anomalies in mammalian cells exposed to 4-nitroquinoline-l-oxide, Mutat. Res. 10, 389–404 (1970).PubMedCrossRefGoogle Scholar
  47. 47.
    H. F. Stich and R. H. C. San, DNA repair and chromatid anomalies in mammalian cells exposed to 4-nitroquinoline-l-oxide, Mutat. Res. 13, 279–282 (1971).CrossRefGoogle Scholar
  48. 48.
    H. F. Stich and R. H. C. San, DNA repair synthesis and cell survival of repair-deficient cells exposed to the K-region epoxide of benz(a)anthracene, Proc. Soc. Exp. Biol. Med. 142, 155–158 (1973).PubMedGoogle Scholar
  49. 49.
    H. F. Stich, R. H. C. San, and Y. Kawazoe, DNA repair synthesis in mammalian cells exposed to a series of oncogenic and non-oncogenic derivatives of 4-nitroquinoline-l-oxide, Nature (London) 229, 416–419 (1971).CrossRefGoogle Scholar
  50. 50.
    H. F. Stich, R. H. C. San, and Y. Kawazoe, Increased sensitivity of Xeroderma pigmentosum cells to some chemical carcinogens and mutagens, Mutat. Res. 17, 127–137 (1973).PubMedCrossRefGoogle Scholar
  51. 51.
    H. F. Stich, R. H. C. San, J. A. Miller, and E. C. Miller, Various levels of DNA repair synthesis in Xeroderma pigmentosum cells exposed to the carcinogens N-hydroxy and N-acetoxy-2-acetylaminofluorene, Nature New Biol. 238, 9–10 (1972).PubMedCrossRefGoogle Scholar
  52. 52.
    H. F. Stich, L. Wei, and P. Lam, The need for a mammalian test system for mutagens: Action of some reducing agents, Cancer Lett. 5, 199–204 (1978).PubMedCrossRefGoogle Scholar
  53. 53.
    J. C. Beck, G. P. Sterling, M. L. Hay-Kaufman, and A. D. Mitchell, Unscheduled DNA synthesis testing of six promutagens using an autoradiography approach, Environ. Mutagen. 3, 315 (1981).Google Scholar
  54. 54.
    J. C. Mirsalis and B. E. Butterworth, Induction of unscheduled DNA synthesis in rat hepatocytes following in vivo treatment with dinitrotoluene, Carcinogenesis 3, 241–245 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    Leonard Hayflick, Subculturing human diploid fibroblast cultures, in: Tissue Culture Methods and Applications (P. F. Kruse and M. K. Patterson, Jr., eds.), pp. 220–223, Academic Press, New York (1973).Google Scholar
  56. 56.
    G. Schmidt and S. J. Thannhauser, A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues, J. Biol. Chem. 161, 83–89 (1945).PubMedGoogle Scholar
  57. 57.
    G. M. Richards, Modification of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA, Anal. Biochem. 57, 369–374 (1974).PubMedCrossRefGoogle Scholar
  58. 58.
    W. C. Guenther, Analysis of Variance, pp. 20–43, Prentice-Hall, Englewood Cliffs, NJ (1964).Google Scholar
  59. 59.
    J. H. Zar, Statistical Analysis, pp. 109–111, Prentice-Hall, Englewood Cliffs, NJ (1974).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ann D. Mitchell
    • 1
  • Jon C. Mirsalis
    • 1
  1. 1.Cellular and Genetic Toxicology DepartmentSRI InternationalMenlo ParkUSA

Personalised recommendations