Direct Assay by Autoradiography for 6-Thioguanine-Resistant Lymphocytes in Human Peripheral Blood

  • Richard J. Albertini
  • Philip C. Kelleher
  • David Sylwester
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 2)


There is great current interest in tests that may be useful for human mutagenicity monitoring. Mutagenicity monitoring, as contrasted with mutagenicity screening, is based on methods that detect evidence of genetic damage — whether germinal or somatic — that occurs in vivo. Most current short-term mutagenicity tests, however, have been developed for screening, i.e., for in vitro mutagenicity testing of chemicals or other agents with mutagenic potential.


Sister Chromatid Exchange Genetic Damage Inverse Sampling HPRT Activity Mutagenicity Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. Evans and M. L. O’Riordan, Human peripheral blood lymphocytes for the analysis of chromosome observations in mutagen tests, in: Handbook of Mutagenicity Test Procedures (B. J. Kilbey, M. Legator, W. Nichols, and C. Ramel, eds.), pp. 261–274, Elsevier/North-Holland, Amsterdam and New York (1977).Google Scholar
  2. 2.
    A. Brogger, Chromosome damage in human mitotic cells after in vivo and in vitro exposure to mutagens, in: Genetic Damage in Man Caused by Environmental Agents (K. Berg, ed.), pp. 87–99, Academic Press, New York (1979).Google Scholar
  3. 3.
    P. Perry and H. J. Evans, Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange, Nature 258, 121–125 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    D. G. Stetka and S. Wolff, Sister chromatid exchange as an assay for genetic damage induced by mutagen-carcinogens. I. In vivo test for compounds requiring metabolic activation, Mutat. Res. 41, 333–342 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Latt, J. W. Allen, W. E. Rogers, and L. A. Juerglus, In vitro and in vivo analysis of sister chromatid exchange formation, in: Handbook of Mutagenicity Test Procedures (B. J. Kilbey, M. Legator, W. Nichols, and C. Ramel, eds.), pp. 275–291, Elsevier/North-Holland, Amsterdam and New York (1977).Google Scholar
  6. 6.
    S. Wolff, Sister chromatid exchanges, Annu. Rev. Genet. 11, 183–210 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    R. W. Pero and F. Mitelman, Another approach to in vivo estimation of genetic damage in humans, Proc. Natl. Acad. Sci. USA 76, 462–463 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    A. W. Kapp, Jr., D. J. Picciano, and C. B. Jacobson, Y-Chromosomal nondisjunction in dibromochloropropane exposed workmen, Mutat. Res. 64, 47–51 (1979).PubMedGoogle Scholar
  9. 9.
    A. J. Wyrobek and W. R. Bruce, The induction of sperm shape abnormalities in mice and humans, in: Chemical Mutagens (A. Hollaender and F. J. deSerres, eds.), Vol. 5, pp. 257–285, Plenum Press, New York (1978).Google Scholar
  10. 10.
    Th. Papayannopoulou, T. C. McGuire, G. Lim, E. Garzel, P. E. Nute, and G. Stamatoyannopoulos, Identification of hemoglobin S in red cells and normoblasts using fluorescent anti-Hb antibodies, Br. J. Haematol. 34, 25–31 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    Th. Papayannopoulou, G. Lim, T. C. McGuire, V. Ahern, P. E. Nute, and G. Stamatoyannopoulos, Use of specific fluorescent antibody for the identification of a hemoglobin C in erythrocytes, Am. J. Hematol. 2, 105–112 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Stamatoyannopoulos, P. E. Nute, Th. Papayannopoulou, T. McGuire, G. Lim, H. F. Bunn, and D. Racknagel, Development of a somatic mutation screening system using Hb mutants. IV. Successful detection of red cells containing the human frameshift mutants Hb Wayne and Hb Cranston using monospecific fluorescent antibodies, Am. J. Hum. Genet. 32, 484–496 (1980).PubMedGoogle Scholar
  13. 13.
    M. Lesch and W. L. Nyhan, A familial disorder of uric acid metabolism and central nervous system function, Am. J. Med. 36, 561–570 (1964).PubMedCrossRefGoogle Scholar
  14. 14.
    J. E. Seegmiller, F. M. Rosenbloom, and W. N. Kelley, Enzyme defect associated with a sex linked human neurological disorder and excessive purine synthesis, Science 155, 1682–1684 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Strauss, L. Lubbe, and E. Geissler, HG-PRT structural gene mutation in the Lesch-Nyhan syndrome as indicated by antigenic activity and reversion of the enzyme deficiency, Hum. Genet. 57, 185–188 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    G. B. Elion and G. H. Hitchings, Metabolic basis for the actions of analogs of purine and pyrimidines, in: Advances in Chemotherapy (A. Goldin, F. Hawkins, and R. J. Schnitzer, eds.), Vol. 2, pp. 91–177, Academic Press, New York (1965).Google Scholar
  17. 17.
    G. B. Elion, Biochemistry and pharmacology of purine analogs, Fed. Proc. 26, 898–904 (1967).PubMedGoogle Scholar
  18. 18.
    G. H. Strauss and R. J. Albertini, Enumeration of 6-thioguanine resistant peripheral blood lymphocytes in man as a potential test for somatic cell mutation arising in vivo, Mutat. Res. 61, 353–379 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    G. H. Strauss, R. J. Albertini, P. Krusinski, and R. D. Baughman, 6-Thioguanine resistant peripheral blood lymphocytes in humans following psoralen long-wave light therapy, J. Invest. Dermatol. 73, 211–216 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    R. J. Albertini, Drug resistant lymphocytes in man as indicators of somatic cell mutation, Teratog. Carcinog. Mutagen. 1, 25–48 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    R. J. Albertini, D. L. Sylwester, B. D. Dannenberg, and E. F. Allen, Mutation in vivo in human somatic cells: Studies using peripheral blood mononuclear cells, in Genetic Toxicology: An Agricultural Perspective, (R. A. Fleck, ed.), pp. 403–424, Plenum Press, New York (1982).Google Scholar
  22. 22.
    R. J. Albertini, K. L. Castle, and W. R. Borcherding, T-Cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood, Proc. Natl. Acad. Sci. USA 79: 6617–6621 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    A. L. Maizel, S. R. Mehta, S. Hauft, D. Franzini, L. B. Lachman, and R. J. Ford, Human T-lymphocyte/monocyte interaction in response to lectin: Kinetics of entry into S-phase, J. Immunol. 127, 1058–1064 (1981).PubMedGoogle Scholar
  24. 24.
    A. C. Allison, T. Hovi, W. E. Watts, and A. B. D. Webster, The role of de novo purine synthesis in lymphocyte transformation, in: Purine and Pyrimidine Metabolism (K. Elliot and E. W. Fitzsimmons, eds.), pp. 207–224, Elsevier/North-Holland/Excerpta Medica, Amsterdam (1977).Google Scholar
  25. 25.
    T. Hovi, A. C. Allison, K. O. Raivio, and A. Vaheri, Purine metabolism and control of cell proliferation, in: Purine and Pyrimidine Metabolism (K. Elliot and D. W. Fitzsimmons, eds.), pp. 225–248, Elsevier/North-Holland/Exerpta Medica, Amsterdam (1977).Google Scholar
  26. 26.
    R. J. Albertini, E. F. Allen, A. S. Quinn, and M. R. Albertini, Human somatic cell mutation: In vivo variant lymphocyte frequencies as determined by 6-thioguanine resistance, in: Population and Biological Aspects of Human Mutation: Birth Defects Institute Symposium XI (E. B. Hook and I. H. Porter, eds.), pp. 235–263, Academic Press, New York (1981).Google Scholar
  27. 27.
    R. J. Albertini, Studies with T-lymphocytes: An approach to human mutagenicity monitoring, in: Banbury Conference Report 13, Indications of Genotoxic Exposure in Man and Animals (B. A. Bridges, I. B. Weinstein, and V. K. McElheny, eds.) pp. 393–412, Cold Spring Harbor Laboratory, Cold Spring Harbor (1982).Google Scholar
  28. 28.
    A. Boyum, Separation of leukocytes from blood and bone marrow, Scand. J. Clin. Lab. Invest. (Suppl. 97) 21, 51–76 (1968).Google Scholar
  29. 29.
    E. Parzen, Modern Probability Theory and Its Applications, Wiley, New York (1960).Google Scholar
  30. 30.
    K. Diem, Documenta Geigy: Mathematical Tables, Geigy Pharmaceuticals, Ardsley, New York (1962).Google Scholar
  31. 31.
    R. J. Albertini, D. L. Sylwester, and E. F. Allen, The 6-thioguanine resistant peripheral blood lymphocyte assay for direct mutagenicity testing in man, in: Mutagenicity: From Bacteria to Man (J. A. Heddle, ed.), pp. 130–145, Academic Press, New York (1981).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard J. Albertini
    • 1
  • Philip C. Kelleher
    • 1
  • David Sylwester
    • 2
  1. 1.Department of MedicineUniversity of Vermont College of MedicineBurlingtonUSA
  2. 2.Biometry FacilityUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations