Use of Fluorescence-Activated Cell Sorter for Screening Mutant Cells

  • William L. Bigbee
  • Elbert W. Branscomb
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 2)


Until recently, virtually all measurements of cellular mutation frequencies have been based on clonogenic assays. In fact, clonogenicity has been considered essential for the legitimate identification of mutant cells because it confirms the transmissbility of the variant phenotype. However, largely because of the apparent connection between somatic mutagenesis and carcinogenesis, it has become important to measure mutational injury in samples of normal somatic cells that generally have little or no replicative capacity. As a result, a number of efforts are underway to develop nonclonogenic mutation assays applicable to cells obtained from in vivo tissue samples and to find alternative means for authenticating the mutant pedigree of detected cells.


Mutant Cell Single Amino Acid Substitution Normal Hemoglobin Mutation Assay Human Hemoglobin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Stamatoyannopoulos, Possibilities for demonstrating point mutations in somatic cells, as illustrated by studies of mutant hemoglobins, in: Genetic Damage in Man Caused by Environmental Agents (K. Berg, ed.), pp. 49–62, Academic Press, New York (1979).Google Scholar
  2. 2.
    W. L. Bigbee, E. W. Branscomb, H. B. Weintraub, Th. Papayannopoulou, and G. Stamatoyannopoulos, Cell sorter immunofluorescence detection of human erythrocytes labeled in suspension with antibodies specific for hemoglobins S and C, J. Immunol. Methods. 45, 117–127 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    A. C. Wilson, S. S. Carlson, and T. J. White, Biochemical evolution, Annu. Rev. Biochem. 46, 573–639 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Reichlin, Amino acid substitution and the antigenicity of globular proteins, in: Advances in Immunology (F. J. Dixon and H. G. Kunkel, eds.), Vol. 20, pp. 71–123, Academic Press, New York (1975).CrossRefGoogle Scholar
  5. 5.
    M. Reichlin, and R. W. Noble, Immunochemistry of protein mutants, in: Immunochemistry of Proteins (M. Z. Atassi, ed.), Vol. 2. pp. 311–349, Plenum Press, New York (1977).CrossRefGoogle Scholar
  6. 6.
    F. A. Garver, M. B. Baker, C. S. Jones, M. Gravely, A. Gultekin, and T. H. J. Huisman, Radioimmunoassay for abnormal hemoglobins, Science 196, 1334–1336 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    T. H. J. Huisman and J. H. P. Jonxis, The Hemoglobinopathies: Techniques of Identification, p. 341–413, Marcel Dekker, New York (1977).Google Scholar
  8. 8.
    J. T. Wilson, L. B. Wilson, V. B. Reddy, C. Cavellesco, P. K. Ghosh, J. K. deRiel, B. G. Forget, and S. M. Weissman, Nucleotide sequence of the coding portion of human α-globin messenger RNA, J. Biol. Chem. 255, 2807–2815 (1980).PubMedGoogle Scholar
  9. 9.
    C. A. Marotta, J. T. Wilson, B. G. Forget, and S. M. Weissman, Human β-globin messenger RNA III. Nucleotide sequences derived from complementary DNA, J. Biol. Chem. 252, 5040–5053 (1977).PubMedGoogle Scholar
  10. 10.
    M. Kimura, The neutral theory of molecular evolution, Sci. Am. Nov, 98-126 (1979).Google Scholar
  11. 11.
    M. Goodman, Decoding the pattern of protein evolution, Prog. Biophys. Mol. Biol., 37, 105–164 (1981).CrossRefGoogle Scholar
  12. 12.
    R. A. Lerner, Tapping the immunological repertoire to produce antibodies of predetermined specificity, Nature 299, 592–596 (1982).CrossRefGoogle Scholar
  13. 13.
    K. Wang and F. M. Richards, Reaction of dimethyl-3,3-dithiobispropionimidate with intact human erythrocytes, J. Biol. Chem. 250, 6622–6626 (1975).PubMedGoogle Scholar
  14. 14.
    J. J. Aragon, J. E. Feliu, R. A. Frenkel, and A. Sols, Permeabilization of animal cells for kinetic studies of intracellular enzymes: In situ behavior of the glycolytic enzymes of erythrocytes, Proc. Natl. Aca. Sci. USA 77, 6324–6328 (1980).CrossRefGoogle Scholar
  15. 15.
    V. Kachel and E. Menke, Hydrodynamic properties of flow cytometric instruments, in: Flow Cytometry and Sorting (M. R. Melamed, P. F. Mullaney, and M. L. Mendelsohn, eds.), pp. 41–59, Wiley, New York (1979).Google Scholar
  16. 16.
    Th. Papayannopoulou, T. C. McGuire, G. Lim, E. Garzel, P. E. Nute, and G. Stamatoyannopoulos, Identification of haemoglobin S in red cells and normoblasts, using fluorescent anti-Hb S antibodies, Br. J. Haematol. 34, 25–31 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    Th. Papayannopoulou, G. Lim, T. C. McGuire, V. Ahern, P. E. Nute, and G. Stamatoyannopoulos, Use of specific fluorescent antibodies for the identification of hemoglobin C in erythrocytes, Am. J. Hematol. 2, 105–112 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    W. L. Bigbee, E. W. Branscomb, and R. H. Jensen, Detection of mutated erythrocytes in man, Presented at the American-Swedish Workshop on Individual Susceptibility to Genotoxic Agents in the Human Population (F. J. deSerres, ed.), held at the National Institutes of Environmental Health Sciences, Research Triangle Park, North Carolina, May 10–12, 1982 (in press).Google Scholar
  19. 19.
    H. W. Goedde, H.-G. Benkmann, and L. Hirth, Ultrathin-layer isoelectric-focusing for rapid diagnosis of protein variants, Hum. Genet. 57, 434–436 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    S. I. O. Anyaibe and V. E. Headings, Identification of inherited protein variants in individual erythrocytes, Biochem. Genet. 18, 455–463 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    J. A. Berzofsky, G. Hicks, J. Fedorko, and J. Minna, Properties of monoclonal antibodies specific for determinants of a protein antigen, myoglobin, J. Biol. Chem. 255, 11188–11191 (1980).PubMedGoogle Scholar
  22. 22.
    G. Stamatoyannopoulos, D. Lindsley, Th. Papayannopoulos, M. Farquhar, M. Brice, P. E. Nute, G. R. Serjeant, and H. Lehmann, Mapping of antigenic sites on human haemoblogin by means of monoclonal antibodies and haemoglobin variants, Lancet ii, 952–954 (1981).CrossRefGoogle Scholar
  23. 23.
    H. Furthmayer, Structural analysis of a membrane glycoprotein: glycophorin A, J. Supramol. Struc. 7, 121–134 (1977).CrossRefGoogle Scholar
  24. 24.
    C. G. Gahmberg, M. Jokinen, and L. C. Andersson, Expression of the major red cell sialoglycoprotein, glycophorin A, in the human leukemic cell line K562, J. Biol. Chem. 254, 7442–7448 (1979).PubMedGoogle Scholar
  25. 25.
    H. Furthmayer, Structural comparison of glycophorins and immunochemical analysis of genetic variants, Nature 271, 519–524 (1978).CrossRefGoogle Scholar
  26. 26.
    P. J. L. Cook, J. E. Noades, C. G. Lomas, K. E. Buckton, and E. B. Robson, Exclusion mapping illustrated by the MNSs blood group, Ann. Hum. Genet. Lond. 44, 61–73 (1980).CrossRefGoogle Scholar
  27. 27.
    R. Prohaska, T. A. W. Koerner Jr., I. M. Armitage, and H. Furthmayer, Chemical and carbon-13 nuclear magnetic resonance studies of the blood group M and N active sialoglycopeptides from human glycophorin A, J. Biol. Chem. 256, 5781–5791 (1981).PubMedGoogle Scholar
  28. 28.
    P. N. Dean and D. Pinkel, High resolution dual laser flow cytometry, J. Histochem. Cytochem. 26, 622–627 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    W. L. Bigbee, M. Vanderlaan, S. S. N. Fong, and R. H. Jensen, Monoclonal antibodies specific for the M and N forms of human glycophorin A, Mol. Immunol. (in press) (1984).Google Scholar
  30. 30.
    R. H. Jensen, W. L. Bigbee, and E. W. Branscomb, Somatic mutations detected by immunofluorescence and flow cytometry, presented at Proceedings of the International Symposium on Biological Dosimetry, Approaches to Mammalian Systems (Neuherberg, West Germany, October 14-16, 1982) (in press).Google Scholar
  31. 31.
    M. J. A. Tanner and D. J. Anstee, The membrane change in En(a —) human erythrocytes, Biochem. J. 153, 271–277 (1976).PubMedGoogle Scholar
  32. 32.
    W. Dahr, K. Beyreuther, E. Gallasch, J. Kruger, and P. Morel, Amino acid sequence of the blood group M(g)-specific major human erythrocyte membrane sialoglycoprotein, Hoppe-Seyler’s Z. Physiol. Chem. 362, 81–85 (1981a).PubMedCrossRefGoogle Scholar
  33. 33.
    W. Dahr, M. Kordowicz, K. Beyreuther, and J. Kruger, The amino-acid sequence of the M(c)-specific major red cell membrane sialoglycoprotein — An intermediate of the blood group M-and N-active molecules, HoppeSeyler’s Z. Physiol. Chem. 362, 363–366 (1981b).Google Scholar
  34. 34.
    H. Furthmayer, M. N. Metaxas and M. Metaxas-Bühler, M(g) and M(c): Mutations within the amino-terminal region of glycophorin A, Proc. Natl. Acad. Sci. USA 78, 631–635 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William L. Bigbee
    • 1
  • Elbert W. Branscomb
    • 1
  1. 1.Lawrence Livermore National Laboratory, Biomedical Sciences DivisionUniversity of CaliforniaLivermoreUSA

Personalised recommendations