The Identification of Somatic Mutations in Immunoglobulin Expression and Structure

  • Donald J. Zack
  • Matthew D. Scharff
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 2)


Naturally occurring and induced mutations have played a major role in molecular biology. In bacteria, mutants provided the crucial insights into the regulation of gene expression and have been used to define the biosynthetic pathways of macromolecules. Mutants in both bacterial and animal viruses have made it possible to define their interactions with host cells and to identify and map the functions that they perform. Naturally occurring mutations and polymorphisms have made it possible to map many of the genes in higher organisms. While the genetic and structural complexity and long division time of animal cells has made it more difficult to establish useful genetic systems, the very complexity of such cells demands that molecular genetics be used if we are ever to fully understand how they function.


Somatic Mutation Myeloma Cell Constant Region Single Amino Acid Substitution Immunoglobulin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Potter, Immunoglobulin-producing tumors and myeloma proteins of mice, Physiol. Rev. 52, 631–719 (1972).PubMedGoogle Scholar
  2. 2.
    E. A. Kabat, T. T. Wu, and H. Bilofsky, Sequences of Immunoglobulin Chains, Publication no. 80-2008, National Institutes of Health (1979).Google Scholar
  3. 3.
    R. Coffino and M. D. Scharff, Rate of somatic mutation in immunoglobulin production by mouse myeloma cells, Proc. Natl. Acad. Sci. USA 68, 219–223 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Baumal, B. K. Birshtein, P. Coffino, and M. D. Scharff, Mutations in immunoglobulinproducing mouse myeloma cells, Science 182, 164–166 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    L. A. Wims and S. L. Morrison, ICR-191 and ethyl methanesulfonate induced mutagenesis at the immunoglobulin locus in the Y5606 cultured myeloma cell line, Mutat. Res. 81, 215–228 (1981).PubMedGoogle Scholar
  6. 6.
    D. E. Yelton, P. Thammana, C. Desaymard, S. B. Roberts, S.-P. Kwan, A. Giusti, D. J. Zack, R. R. Pollock, and M. D. Scharff, Monoclonal antibodies: The production of tailor made serological reagents, in: From Gene to Protein: Translation into Biotechnology, The Fourteenth Miami Winter Symposium (F. Ahmed, J. Shultz, E. E. Smith, and W. J. Whelan, eds.), Academic Press, New York (1982).Google Scholar
  7. 7.
    T. T. Wu and E. A. Kabat, An analysis of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity, J. Exp. Med. 132, 211–250 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Givol, The antibody combining site, Int. Rev. Biochem. 23, 71–125 (1979).Google Scholar
  9. 9.
    W. J. Dreyer and J. C. Bennett, the molecular basis of antibody formation. A paradox, Proc. Natl. Acad. Sci. USA 54, 864–869 (1965).PubMedCrossRefGoogle Scholar
  10. 10.
    J. M. Adams, The organization and expression of immunoglobulin genes, Immunol. Today 1, 10–17 (1980).CrossRefGoogle Scholar
  11. 11.
    C. Brack, M. Hirama, R. Lenhard-Schuller, and S. Tonegawa, A complete immunoglobulin gene is created by somatic recombination, Cell 15, 1–14 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Leder, E. E. Max, J. G. Seidman, S.-P. Kwan, M. Scharff, M. Nau, and B. Norman, Recombination events that activate, diversify, and delete immunoglobulin genes, Cold Spring Harbor Sympl Quant. Biol. 45, 859–865 (1981).CrossRefGoogle Scholar
  13. 13.
    M. G. Weigert, I. M. Cesari, S. J. Yonkovich, and M. Cohn, Variability in the lambda light chain sequences of mouse antibody, Nature 228, 1045–1047 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Kim, M. Davis, E. Sinn, P. Patten, and L. Hood, Antibody diversity: Somatic hypermutation of rearranged VinH genes, Cell 27, 573–581 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Baltimore, Somatic mutation gains its place among the generators of diversity, Cell 26, 295–296 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Cohn, R. Langman, and W. Geckeler, Diversity 1980, Prog. Immunol. 4, 153–201 (1980).Google Scholar
  17. 17.
    P. Early, H. Huang, M. Davis, K. Calame, and L. Hood, An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH, Cell 79, 981–992 (1980).CrossRefGoogle Scholar
  18. 18.
    E. E. Max, J. G. Seidman, and P. Leder, Sequences of five potential recombination sites encoded close to an immunoglobulin constant region gene, Proc. Natl. Acad. Sci. USA 76, 3450–3454 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Sakano, K. Huppi, G. Heinrich, and S. Tonegawa, Sequences at the somatic recombination sites of immunoglobulin light-chain genes, Nature 280, 288–294 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    A. R. Lawton, P. W. Kincade, and M. D. Cooper, Sequential expression of germ line genes in development of immunoglobulin class diversity, Fed. Proc. 34, 33–39 (1975).PubMedGoogle Scholar
  21. 21.
    A. Shimizu, N. Takakashi, Y. Yamawaki-Kataoka, Y. Nishida, T. Kataoka, and T. Honjo, Ordering of mouse immunoglobulin heavy chain genes by molecular cloning, Nature 289, 149–153 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Nishida, T. Kataoka, N. Ishida, S. Nakai, T. Kushimoto, I. Bottcher, and T. Honjo, Cloning of mouse immunoglobulin gene and its location within the heavy chain gene cluster, Proc. Natl. Acad. Sci. USA 78, 1581–1585 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    K. W. Moore, J. Rogers, T. Hunkapiller, P. Early, C. Nottenburg, I. Weissman, H. Bazin, R. Wall, and L. E. Hood, Expression of IgD may use both DNA rearrangement and RNA splicing mechanisms, Proc. Natl. Acad. Sci. USA 78, 1800–1804 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Maki, W. Roeder, A. Traunecker, C. Sidman, M. Wabl, W. Raschke, and S. Tonegawa, The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin delta genes, Cell 24, 353–365 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    M. M. Davis, S. K. Kim, and L. E. Hood, DNA sequences mediating class switching in α-immunoglobulins, Science 209, 1360–1365 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Sakano, R. Maki, Y. Kurosawa, W. Roeder, and S. Tonegawa, Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes, Nature 286, 676–683 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    J.-L. Preud’homme, J. Buxbaum, and M. D. Scharff, Mutagenesis of mouse myeloma cells with Melphalan, Nature 245, 320–322 (1973).CrossRefGoogle Scholar
  28. 28.
    B. W. Penman and W. G. Thilly, Concentration-dependent mutation of diploid human lymphoblasts by methytnitronitrosoguanidine: The importance of phenotypic lag, Somatic Cell Genet. 2, 325–330 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Jacobs and R. Demars, Quantification of chemical mutagenesis in diploid human fibroblasts: Induction of azaguanine-resistant mutants by N-methyl-N′-nitro-N-nitrosoguanidine, Mutat. Res. 53, 29–53 (1978).PubMedGoogle Scholar
  30. 30.
    U. Friedrich and P. Coffino, Mutagenesis in 549 mouse lymphoma cells: Induction of resistance to ouabain, 6-thioguanine and dibutycyl cyclic AMP, Proc. Natl. Acad. Sci. USA 74, 679–683 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    R. G. H. Cotton, D. S. Secher, and C. Milstein, Somatic mutation and the origin of antibody diversity. Clonal variability of the immunoglobulin produced by MOPC 21 cells in culture, Eur. J. Immunol. 3, 135–140 (1973).CrossRefGoogle Scholar
  32. 32.
    K. Adetugbo, C. Milstein, and D. S. Secher, Molecular analysis of spontaneous somatic mutants, Nature 265, 299–304 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Coffino, R. Laskov, and M. D. Scharff, Immunoglobulin production: Method for quantitatively detecting variant myeloma cells, Science 167, 186–188 (1970).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Coffino, R. Baumal, R. Laskov, and M. D. Scharff, Cloning of mouse myeloma cells and detection of rare variants, J. Cell. Physiol. 79, 429–400 (1972).PubMedCrossRefGoogle Scholar
  35. 35.
    W. D. Cook and M. D. Scharff, Antigen-binding mutants of mouse myeloma cells, Proc. Natl. Acad. Sci. USA 74, 5687–5691 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    R. J. Wang, Effect of room fluorescent light on the deterioration of tissue culture medium, In Vitro 12, 19–22 (1976).PubMedCrossRefGoogle Scholar
  37. 37.
    B. K. Birshtein, J.-L. Preud’homme, and M. D. Scharff, Variants of mouse myeloma cells that produce short immunoglobulin heavy chains, Proc. Natl. Acad. Sci. USA 71, 3478–3482 (1974).PubMedCrossRefGoogle Scholar
  38. 38.
    J.-L. Preud’homme, B. K. Birshtein, and M. D. Scharff, Variants of a mouse myeloma cell line that synthesize immunoglobulin heavy chains having an altered serotype, Proc. Natl. Acad. Sci. USA 72, 1427–1430 (1975).CrossRefGoogle Scholar
  39. 39.
    S. Koskimies and B. K. Birshtein, Primary and secondary variants in immunoglobulin heavy chain production, Nature 264, 480–482 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    T. Francus, B. Dharmgrongartama, R. Campbell, M. D. Scharff, and B. K. Birshtein, IgG2a-producing variants of an IgG2b-producing mouse myeloma cell line, J. Exp. Med. 147, 1535–1550 (1978).PubMedCrossRefGoogle Scholar
  41. 41.
    S. L. Morrison, Murine heavy chain disease, Eur. J. Immunol. 8, 194–199 (1978).PubMedCrossRefGoogle Scholar
  42. 42.
    W. D. Cook, S. Rudikoff, A. M. Giusti, and M. D. Scharff, Somatic mutation in a cultured mouse myeloma cell affects antigen binding, Proc. Natl. Acad. Sci. USA 79, 1240–1248 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Rudikoff, A. M. Giusti, W. D. Cook, and M. D. Scharff, A single amino acid substitution altering antigen binding specificity, Proc. Natl. Acad. Sei USA 79, 1979–1983 (1982).CrossRefGoogle Scholar
  44. 44.
    N. K. Jerne and A. A. Nordin, Plaque formation in agar by single antibody-producing cells, Science 140, 405 (1963).CrossRefGoogle Scholar
  45. 45.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256, 495–497 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Nisonoff, Coupling of diazonium compounds to proteins, in: Methods in Immunology and Immunochemistry (C. A. Williams and M. W. Chase, eds.), Vol. 1, pp. 120–126, Academic Press, New York (1967).Google Scholar
  47. 47.
    B. Chesebro and H. Metzger, Affinity labeling of a phosphorylcholine binding mouse myeloma protein, Biochem. 11, 166–771 (1972).Google Scholar
  48. 48.
    P. C. Isakson, J. L. Honegger, and S. C. Kinsky, Preparation of stable erythrocyte target cells suitable for detection of the antibody response to the haptens azobenzenearsonate, azophenyltrimethylammonium and azophenylphosphorylcholine by plaque-forming cell assay, J. Immunol. Methods 25, 89–96 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    E. R. Gold and H. H. Fudenberg, Chromic chloride: A coupling reagent for passive hemagglutination reactions, J. Immunol. 99, 859–866 (1967).PubMedGoogle Scholar
  50. 50.
    J. W. Goding, The chromic chloride method of coupling antigens to erythrocytes: Definition of some important parameters, J. Immunol. Methods 10, 61–66 (1976).PubMedCrossRefGoogle Scholar
  51. 51.
    R. Kofler and G. Wick, Some methodologie aspects of the chromium chloride method for coupling antigen to erythrocytes, J. Immunol. Methods 16, 201–209 (1977).PubMedCrossRefGoogle Scholar
  52. 52.
    G. A. Molinaro, E. Maron, and S. Dray, Antigen-secreting cells: Enumeration by means of hybrid-antibody coated erythrocytes in a reverse hemolytic plaque assay, Proc. Natl. Acad. Sci. USA 71, 1229–1233 (1974).PubMedCrossRefGoogle Scholar
  53. 53.
    E. Gronowicz, A. Coutinho, and F. Melchers, A plaque assay for all cells secreting Ig of a given type or class, Eur. J. Immunol. 6, 588–590 (1976).PubMedCrossRefGoogle Scholar
  54. 54.
    A. J. Cunningham and A. Szenberg, Further improvements in the plaque technique for detecting single antibody-forming cells, Immunology 14, 599–600 (1968).PubMedGoogle Scholar
  55. 55.
    T. Mosmann and R. Baumal, Macroscopic cloning assay using complement fixation to isolate secretion variants of myeloma cells, J. Immunol. Methods 10, 119–125 (1976).PubMedCrossRefGoogle Scholar
  56. 56.
    J. Sharon, S. L. Morrison, and E. A. Kabat, Detection of specific hybridoma clones by replica immunoabsorption of their secreted antibodies, Proc. Natl. Acad. Sci. USA 76, 1420–1424 (1979).PubMedCrossRefGoogle Scholar
  57. 57.
    B. Liesegang, A. Radbruch, and K. Rajewsky, Isolation of myeloma variants with predefined variant surface immunoglobulin by cell sorting, Proc. Natl. Acad. Sci. USA 75, 3901–3905 (1978).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Radbruch, B. Liesegang, and K. Rajewsky, Isolation of variants of mouse myeloma X63 that express changed immunoglobulin class, Proc. Natl. Acad. Sci. USA 77, 2909–2913 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    M. S. Neuberger and K. Rajewsky, Switch from hapten-specific immunoglobulin M to immunoglobulin D secretion in a hybrid mouse cell line, Proc. Natl. Acad. Sci. USA 78, 1138–1142 (1981).PubMedCrossRefGoogle Scholar
  60. 60.
    B. Holtkamp, M. Cramer, H. Lemke, and K. Rajewsky, Isolation of a cloned cell line expressing variant H-2Kk using fluorescence-activated cell sorting, Nature 289, 66–68 (1981).PubMedCrossRefGoogle Scholar
  61. 61.
    J. L. Dangl, D. R. Parks, V. T. Oi, and L. A. Herzenberg, Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting, J. Imm. Methods, 52, 1–14 (1982).CrossRefGoogle Scholar
  62. 62.
    D. R. Parks, V. M. Bryan, V. T. Oi, and L. A. Herzenberg, Antigen-specific identification and cloning of hybridomas with a fluorescence-activated cell sorter, Proc. Natl. Acad. Sci. USA 76, 1962–1966 (1979).PubMedCrossRefGoogle Scholar
  63. 63.
    H. Schreiber and P. Leibson, Suppression of myeloma growth in vitro by anti-idiotypic antibodies: Inhibition of DNA synthesis and colony formation, J. Natl. Cancer Inst. 60, 225–233 (1978).PubMedGoogle Scholar
  64. 64.
    T. V. Rajan, H-2 Antigen variants in a cultured heterozygous mouse leukemia cell line, VII. Effect of selection with a hybridoma antibody, Immunogenetics 10, 423–431 (1980).PubMedCrossRefGoogle Scholar
  65. 65.
    P. J. Leibson, H. Schreiber, M. R. Loken, S. Panem, and D. A. Rowley, Time-dependent resistance or susceptibility of tumor cells to cytotoxic antibody after exposure to a chemotherapeutic agent, Proc. Natl. Acad. Sci USA 75, 6202–6206 (1978).PubMedCrossRefGoogle Scholar
  66. 66.
    G. Kohler and M. J. Shulman, Immunoglobulin M mutants, Eur. J. Immunol. 10, 467–476 (1980).CrossRefGoogle Scholar
  67. 67.
    M. J. Shulman, C. Filkin, and C. Heusser, Mutations affecting the structure and function of immunoglobulin M, Mol. and Cell. Biol. 2, 1033–1043 (1982).Google Scholar
  68. 68.
    K. A. Krolick, C. Villemez, P. Isakson, J. W. Uhr, and E. S. Vitetta, Selective killing of normal or neoplastic B cells by antibodies coupled to the A chain of ricin, Proc. Natl. Acad. Sci. USA 77, 5419–5423 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    D. G. Gilliband, Z. Steplewski, R. J. Collier, K. F. Mitchell, T. H. Chang, and H. Koprowski, Antibody-directed cytotoxic agents, Use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells, Proc. Natl. Acad. Sci. USA 77, 4539–4543 (1980).CrossRefGoogle Scholar
  70. 70.
    M.-T. B. Davis and J. F. Preston, A conjugate of α-amanitin and monoclonal immunoglobulin G to Thy 1.2 antigen is selectively toxic to T lymphoma cells, Science 213, 1385–1388 (1981).PubMedCrossRefGoogle Scholar
  71. 71.
    D. H. Margulies, W. M. Kuehl, and M. D. Scharff, Somatic cell hybridization of mouse myeloma cells, Cell 8, 405–415 (1976).PubMedCrossRefGoogle Scholar
  72. 72.
    P. J. Gearhart, N. D. Johnson, R. Douglas, and L. Hood, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts, Nature 219, 29–34 (1981).CrossRefGoogle Scholar
  73. 73.
    N. M. Gough and O. Bernard, Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity, Proc. Natl. Acad. Sci. USA 78, 509–513 (1981).PubMedCrossRefGoogle Scholar
  74. 74.
    M. Pech, J. Hochtl, M. Schnell, and H. G. Zachau, Differences between germ-line and rearranged Immunoglobulin V coding sequences suggest a localized mutation mechanism, Nature 291, 668–670 (1981).PubMedCrossRefGoogle Scholar
  75. 75.
    E. Seising and U. Storb, Somatic mutation of immunoglobulin light-chain variable-region genes. Cell 25, 47–58 (1981).CrossRefGoogle Scholar
  76. 76.
    A. L. Bothewell, M. Paskind, M. Reth, T. Imanishi-Kari, K. Rajewsky, and D. Baltimore, Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a gamma 2a variable region, Cell 24, 625–637 (1981).CrossRefGoogle Scholar
  77. 77.
    H. K. Gershenfeld, A. Tsukamoto, I. L. Weissman, and R. Joho, Somatic diversification is required to generate the V genes of MOPC 511 and MOPC 167 myeloma proteins, Proc. Natl. Acad. Sci. USA 78, 7674–7678 (1981).PubMedCrossRefGoogle Scholar
  78. 78.
    S. L. Morrison and M. D. Scharff, Mutational events in mouse myeloma cells, CRC Crit. Rev. Immunol. 3, 1–22 (1981).Google Scholar
  79. 79.
    T. Honjo, M. Obata, Y. Yamawaki-Kataoka, T. Kataoka, T. Kawakamim, N. Takahashi, and Y. Mano, Cloning and complete nucleotide sequence of mouse immunoglobulin γ1 chain gene, Cell 18, 559–568 (1979).PubMedCrossRefGoogle Scholar
  80. 80.
    A. L. Kenter and B. K. Birshtein, Genetic mechanism accounting for precise immunoglobulin domain deletion in a variant of MPC 11 myeloma cells, Science 206, 1307–1309 (1979).PubMedCrossRefGoogle Scholar
  81. 81.
    S. Weitzman and M. D. Scharff, Mouse myeloma mutants blocked in the assembly, glycosylation and secretion of immunoglobulin, J. Mol. Biol. 102, 237–252 (1976).PubMedCrossRefGoogle Scholar
  82. 82.
    S. Weitzman, L. Palmer, and M. Grennon, Serum decay and placental transport of a mutant mouse myeloma immunoglobulin with defective Polypeptide and Oligosaccharide structure, J. Immunol. 122, 12–18 (1979).PubMedGoogle Scholar
  83. 83.
    D. J. Zack, S. L. Morrison, W. D. Cook, W. Dackowski, and M. D. Scharff, Somatically generated mouse myeloma variants synthesizing IgA half-molecules, J. Exp. Med. 154, 1554–1659 (1981).PubMedCrossRefGoogle Scholar
  84. 84.
    E. A. Robinson and E. Appella, Amino acid sequence of a mouse myeloma immunoglobulin heavy chain (MOPC 47A) with a 100-residue deletion, J. Biol. Chem. 254, 11418–11430 (1979).PubMedGoogle Scholar
  85. 85.
    K. Adetugbo, Spontaneous somatic mutations, structural studies on mutant immunoglobulins, J. Biol. Chem. 253, 6076–6080 (1978).PubMedGoogle Scholar
  86. 86.
    W. Cook, C. Desaymard, A. Giusti, S.-P. Kwan, P. Thammana, D. Yelton, D. Zack, S. Rudikoff, and M. D. Scharff, Somatic mutations in the variable region of an antigen binding myeloma, in: Immunoglobulin Idiotypes (C. Janeway, E. E. Sercarz, and H. Wigzell, eds.), pp. 281–292, Academic Press, New York (1981).Google Scholar
  87. 87.
    H. Sakano, J. H. Rogers, K. Huppi, C. Brack, A. Traunecker, R. Maki, R. Wall, and S. Tonegawa, Domains and the hinge region of an immunoglobulin heavy chain are encoded in separate DNA segments, Nature 277, 627–633 (1979).PubMedCrossRefGoogle Scholar
  88. 88.
    W. Dunnick, T. H. Rabbits, and C. Milstein, A mouse immunoglobulin heavy chain deletion mutant: Isolation of a cDNA clone and sequence analysis of the mRNA, Nucl. Acids Res. 8, 1475–1484 (1980).PubMedCrossRefGoogle Scholar
  89. 89.
    W. Dunnick, T. H. Rabbits, and C. Milstein, An immunoglobulin deletion mutant with implications for the heavy-chain switch and RNA splicing, Nature 286, 669–675 (1980).PubMedCrossRefGoogle Scholar
  90. 90.
    S. Morrison and B. Birshtein, personal communication.Google Scholar
  91. 91.
    R. J. Monk, S. L. Morrison, and C. Milcarek, Heavy-chain mutants derived from γ2b mouse myeloma: Characterization of heavy-chain messenger ribonucleic acid, proteins, and secretion in deletion mutants and messenger ribonucleic acid in γ2a mutant progeny, Biochemistry 20, 2330–2339 (1981).PubMedCrossRefGoogle Scholar
  92. 92.
    W. D. Cook, B. Dharmgrongartama, and M. D. Scharff, Variable and constant region variants, in: Cells of Immunoglobulin Synthesis (B. Pernis and H. J. Vogel, eds.), pp. 99–112, Academic Press, New York (1979).Google Scholar
  93. 93.
    T. Francus and B. K. Birshtein, An IgG2a-producing variant of an IgG2b-producing mouse myeloma cell line. Structural studies on the Fc region of parent and variant heavy chains, Biochemistry 17, 4324–4331 (1978).PubMedCrossRefGoogle Scholar
  94. 94.
    B. K. Birshtein, R. Campbell, and M. L. Greenberg, A γ2bγ2a hybrid immunoglobulin heavy chain produced by a variant of the MPC-11 mouse myeloma cell line, Biochemistry 19, 1730–1737 (1980).PubMedCrossRefGoogle Scholar
  95. 95.
    L. A. Eckhardt, S. A. Tilley, R. B. Lang, K. B. Marcu, and B. K. Birshtein, DNA rearrangements in MPC 11 immunoglobulin heavy chain class switch variants, Proc. Natl. Acad. Sci. USA. 79, 3006–3010 (1982).PubMedCrossRefGoogle Scholar
  96. 96.
    P. Thammana and M. D. Scharff, Immunoglobulin heavy chain class switch from IgM to IgG in a hybridoma, Europ. J. Imm. 13, 614–619 (1983).CrossRefGoogle Scholar
  97. 97.
    W. M. Kuehl and M. D. Scharff, Synthesis of a carboxyl-terminal (constant region) fragment of immunoglobulin light chain by a mouse myeloma cell line, J. Mol. Biol. 89, 409–421 (1974).PubMedCrossRefGoogle Scholar
  98. 98.
    E. Choi, M. Kuehl, and R. Wall, RNA splicing generates a variant light chain from an aberrantly rearranged gene, Nature 286, 776–779 (1980).PubMedCrossRefGoogle Scholar
  99. 99.
    J. G. Seidman and P. Leder, A mutant immunoglobulin light chain is formed by aberrant DNA-and RNA-splicing events, Nature 286, 779–783 (1980).PubMedCrossRefGoogle Scholar
  100. 100.
    S.-P. Kwan, E. E. Max, J. G. Seidman, P. Leder, and M. D. Scharff, Two kappa immunoglobulin genes are expressed in the myeloma S107, Cell 26, 57–66 (1981).PubMedCrossRefGoogle Scholar
  101. 101.
    O. Bernard, N. M. Gough, and J. M. Adams, Plasmacytomas with more than one immunoglobulin mRNA: Implications for allelic exclusion, Proc. Natl. Acad. Sci. USA 78, 5812–5816 (1981).PubMedCrossRefGoogle Scholar
  102. 102.
    C. Coleclough, R. P. Perry, K. Karjalainen, and M. Weigert, Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression, Nature 290, 372–378 (1981).PubMedCrossRefGoogle Scholar
  103. 103.
    M. Wallach, R. Ishay-Michaeli, David Givol, and Reuven Laskov, Immunoglobulin mRNA in myeloma mutants, J. Imm. 128, 684–690 (1982).Google Scholar
  104. 104.
    P. Ponte, M. Dean, V. H. Pepe, and G. Sonenshein, Regulation of heavy chain gene expression in mouse myeloma MOPC 315 cells, abstract, From Gene to Protein: Translation into Biotechnology, The Fourteenth Miami Winter Symposium (F. Ahmed, J. Shultz, E. E. Smith, and W. J. Whelan, eds.), Academic Press, New York, p. 86 (1982).Google Scholar
  105. 105.
    D. E. Yelton and M. D. Scharff, Monoclonal antibodies, a powerful new tool in biology and medicine, Annu. Rev. Biochem. 50, 657–680 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Donald J. Zack
    • 1
  • Matthew D. Scharff
    • 1
  1. 1.Department of Cell BiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations