Advertisement

Somatic-Cell Mutation Monitoring System Based on Human Hemoglobin Mutants

  • George Stamatoyannopoulos
  • Peter Nute
  • Dale Lindsley
  • Margaret Farquhar
  • Martha Brice
  • Betty Nakamoto
  • Thalia Papayannopoulou
Part of the Topics in Chemical Mutagenesis book series (TCM, volume 2)

Abstract

The system described in this chapter was developed as a means of detecting rare red cells, in genetically normal (HbA/HbA) individuals, that are heterozygous for an abnormal hemoglobin. It is assumed, first, that mutations arise spontaneously in human hemopoietic stem cells, as they do in gametal stem cells, and second, that somatic mutations of globin-chain genes do not diminish the viability of affected stem cells. The latter assumption is a reasonable one, since phenotypic expression of such mutations occurs very late in hemopoietic cell differentiation. It is expected that as a result of these stem cell mutations, lines of stem cells containing the mutant globin genes are established and produce erythrocytes heterozygous for structurally abnormal globin chains. Development of appropriate methods of screening blood samples should then permit detection and enumeration of red cells that contain an abnormal hemoglobin as a result of somatic mutation in a stem cell.

Keywords

Globin Gene Equine Infectious Anemia Virus Fetal Hemoglobin Human Hemoglobin Globin Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. C. Atwood, The presence of A2 erythrocytes in A1 blood, Proc. Natl. Acad. Sci. USA 44, 1054–1057 (1958).PubMedCrossRefGoogle Scholar
  2. 2.
    K. C. Atwood and S. L. Scheinberg, Somatic variation in human erythrocyte antigens, J. Cell Comp. Physiol. 52 (Suppl. 1), 97–123 (1958).CrossRefGoogle Scholar
  3. 3.
    K. C. Atwood and S. L. Scheinberg, Isotope dilution method for assay of inagglutinable erythrocytes, Science 129, 963–964 (1959).PubMedCrossRefGoogle Scholar
  4. 4.
    K. C. Atwood and F. J. Pepper, Erythrocyte automosaicism in some persons of known genotype, Science 134, 2100–2102 (1961).PubMedCrossRefGoogle Scholar
  5. 5.
    H. E. Sutton, Monitoring somatic mutations in human populations, in: Mutagenic Effects of Environmental Contaminants (H. E. Sutton and M. I. Harris, eds.), pp. 121–128, Academic Press, New York (1972).Google Scholar
  6. 6.
    H. E. Sutton, Somatic cell mutations, in: Birth Defects, Proceedings of the 4th International Conference (A. G. Motulsky and W. Lenz, eds.), pp. 212–214, Exerpta Medica, Amsterdam (1974).Google Scholar
  7. 7.
    W. G. Wood, G. Stamatoyannopoulos, G. Lim, and P. E. Nute, F-Cells in the adult: Normal values and levels in individuals with hereditary and acquired elevations of Hb F, Blood 46, 671–682 (1975).PubMedGoogle Scholar
  8. 8.
    S. H. Boyer, T. K. Belding, L. Margolet, and A. N. Noyes, Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults, Science 188, 361–363 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Stamatoyannopoulos and Th. Papayannopoulou, Fetal hemoglobin and the erythroid stem cell differentiation process, in: Cellular and Molecular Regulation of Hemoglobin Switching (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 323–341, Grune and Stratton, New York (1979).Google Scholar
  10. 10.
    Th. Papayannopoulou, P. E. Nute, G. Stamatoyannopoulos, and T. C. McGuire, Hemoglobin ontogenesis: Test of the gene excision hypothesis, Science 196, 1215–1216 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    Th. Papayannopoulou and G. Stamatoyannopoulos, On the origin of F cells in the adult: Clues from studies in clonal hemopathies, in: Cellular and Molecular Regulation of Hemoglobin Switching (G. Stamatoyannopoulos and W. W. Nienhuis, eds.), pp. 73–84, Grune and Stratton, New York (1979).Google Scholar
  12. 12.
    S. H. Boyer, G. J. Dover, K. D. Smith, and A. Scott, Some interpretations of in vivo studies of globin gene switching in man and primates, in: Hemoglobins in Development and Differentiation (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 225–241, Alan R. Liss, New York (1981).Google Scholar
  13. 13.
    Th. Papayannopoulou, B. Nakamoto, S. Kurachi, D. Kurnit, and G. Stamatoyannopoulos, Cell biology of hemoglobin switching. II. Studies on the regulation of fetal hemoglobin synthesis in human adults, in: Hemoglobins in Development and Differentiation (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 307–320, Alan R. Liss, New York (1981).Google Scholar
  14. 14.
    E. Beutler, Red cell metabolism. A. Defects not causing hemolytic disease. B. Environmental modification, Biochimie 54, 759–764 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Deisseroth, A. Nienhuis, P. Turner, R. Velez, W. F. Anderson, F. Ryddle, J. Lawrence, R. Creagan, and R. Kucherlapati, Localization of the human α-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay, Cell 12, 205–218 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Maniatis, E. F. Fritsch, J. Lauer, R. M. Lawn, N. J. Proudfoot, M. H. M. Shander, and C.-K. J. Shen, The structure and chromosomal arrangement of human globin genes, in: Organization and Expression of Globin Genes (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 15–31, Alan R. Liss, New York (1981).Google Scholar
  17. 17.
    J. Lauer, C.-K. J. Shen, and T. Maniatis, The chromosomal arrangement of human α-like globin genes: Sequence homology and α-globin gene deletions, Cell 20, 119–130 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    P. F. R. Little, Globin pseudogenes, Cell 28, 683–684 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    S. A. Liebhaber, M. Goossens, and Y. W. Kan, Homology and concerted evolution at the al and α2 loci of human α-globin, Nature 290, 26–29 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Deisseroth, A. Nienhuis, J. Lawrence, R. Giles, P. Turner, and F. H. Ruddle, Chromosomal localization of human β-globin gene on human chromosome 11 in somatic cell hybrids, Proc. Natl. Acad. Sci. USA 75, 1456–1460 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    E. F. Fritsch, R. M. Lawn, and T. Maniatis, Molecular cloning and characterization of the human β-like globin gene cluster, Cell 19, 959–972 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    H. F. Bunn, D. N. Haney, K. H. Gabbay, and P. M. Gallop, Further identification of the nature and linkage of the carbohydrate in hemoglobin AIc, Biochem, Biophys. Res. Commun. 67, 103–109 (1975).CrossRefGoogle Scholar
  23. 23.
    Y. W. Kan, A. M. Dozy, H. E. Varmus, J. M. Taylor, J. P. Holland, L. E. Lie-Injo, J. Ganesan, and D. Todd, Deletion of α-globin genes in haemoglobin-H disease demonstrates multiple α-globin structural loci, Nature 255, 255–256 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    A. M. Dozy, Y. W. Kan, S. H. Embury, W. C. Mentzer, W. C. Wang, B. Lubin, J. R. Davis, Jr., and H. M. Koenig, α-Globin gene organization in Blacks precludes the severe form of a thalassaemia, Nature 280, 605–607 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    D. J. Weatherall and J. B. Clegg, The Thalassaemia Syndromes, 3rd ed., Blackwell Scientific Publications, Oxford (1981).Google Scholar
  26. 26.
    M. Pirastu, K. Y. Lee, A. M. Dozy, Y. W. Kan, G. Stamatoyannopoulos, M. G. Hadjiminas, Z. Zchariades, A. Angius, M. Furbetta, C. Rosatelli, and A. Cao, Alpha-thalassemia in two Mediterranean populations, Blood 60, 509–512 (1982).PubMedGoogle Scholar
  27. 27.
    R. A. Spritz and B. G. Forget, The thalassemias: Molecular mechanisms of human genetic disease, Am. J. Hum. Genet, 35, 333–361 (1983).PubMedGoogle Scholar
  28. 28.
    J. C. Chang and Y. W. Kan, β°-Thalassemia, a nonsense mutation in man, Proc. Natl. Acad. Sci. USA 76, 2886–2889 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    R. F. Trecartin, S. A. Liebhaber, J. C. Chang, K. Y. Lee, and Y. W. Kan, β° Thalassemia in Sardinia is caused by a nonsense mutation, J. Clin Invest. 68, 1012–1017 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    S. H. Orkin and S. C. Goff, Nonsense and frameshift mutations in β°-thalassemia detected in cloned β-globin genes, J. Biol. Chem. 256, 9782–9784 (1981).PubMedGoogle Scholar
  31. 31.
    R. Treisman, N. J. Proudfoot, M. Shander, and T. Maniatis, A single-base change at a splice site in a β°-thalassemic gene causes abnormal RNA splicing, Cell 29, 903–911 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Baird, C. Driscoll, H. Schreiner, G. V. Sciarratta, G. Sansone, G. Niazi, F. Ramirez, and A. Bank, A nucleotide change at a splice junction in the human β-globin gene is associated with β°-thalassemia, Proc. Natl. Acad. Sci. USA 78, 4218–4221 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    S. H. Orkin, H. H. Kazazian, Jr., S. E. Antonarakis, S. C. Goff, C. D. Boehm, J. P. Sexton, P. G. Waber, and P. J. V. Giardina, Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster, Nature 296, 627–631 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    R. A. Spritz, P. Jagadeeswaran, P. V. Choudary, P. A. Biro, J. T. Elder, J. K. DeRiel, J. L. Manley, M. L. Gefter, B. G. Forget, and S. M. Weissman, Base substitution in an intervening sequence of a β+-thalassemic human globin gene, Proc. Natl. Acad. Sci. USA 78, 2455–2459(1981).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Westaway and R. Williamson, An intron nucleotide sequence variant in a cloned ββ+-thalassemia globin gene, Nucl. Acids Res. 9, 1777–1788 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Busslinger, N. Moschonas, and R. A. Flavell, β+-Thalassemia: Aberrant splicing results from a single point mutation in an intron, Cell 27, 289–298 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    Y. Fukumaki, P. K. Ghosh, E. J. Benz, Jr., V. B. Reddy, P. Lebowitz, B. G. Forget, and S. M. Weissman, Identification of an abnormally spliced messenger RNA in erythroid cells from patients with β+-thalassamia and monkey cells expressing a cloned β+-thalassemia gene, Cell 28, 585–593 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    T. J. Ley, N. P. Anagnou, G. Pepe, and A. W. Nienhuis, RNA processing errors in patients with β-thalassemia, Proc. Natl. Acad. Sci. USA 79, 4775–4779 (1982).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Poncz, M. Ballantine, D. Solowiejczyk, I. Barak, E. Schwartz, and S. Surrey, β-Thalassamia in a Kurdish Jew, J. Biol. Chem. 257, 5994–5996 (1982).PubMedGoogle Scholar
  40. 40.
    S. H. Orkin, J. M. Old, D. J. Weatherall, and D. G. Nathan, Partial deletion of β-globin gene in certain patients with β°-thalassemia, Proc. Natl. Acad. Sci. USA 76, 2400–2404 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    C. Baglioni, Abnormal human hemoglobins. X. A study of hemoglobin LeporeBoston, Biochim. Biophys. Acta 97, 37–46 (1965).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Ottolenghi, B. Giglioni, P. Comi, A. M. Gianni, E. Polli, C. T. A. Acquaye, J. H. Oldham, and G. Masera, Globin gene deletion in HPFH, δ°β° thalassaemia and Hb Lepore disease, Nature 278, 654–657 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    J. G. Mears, F. Ramirez, D. Liebowitz, F. Nakamura, A. Bloom, F. Konotey-Ahulu, and A. Bank, Changes in restricted human cellular DNA fragments containing globin gene sequences in thalassemia and related disorders, Proc. Natl. Acad. Sci. USA 75, 1222–1226 (1978).PubMedCrossRefGoogle Scholar
  44. 44.
    E. F. Fritsch, R. M. Lawn, and T. Maniatis, Characterization of deletions which affect the expression of fetal globin genes in man, Nature 279, 598–603 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Bernards, J. M. Kooter, and R. A. Flavell, Physical mapping of the globin gene deletion in (δβ)°-thalassemia, Gene 6, 265–280 (1979).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Ottolenghi, B. Giglioni, R. Taramelli, J. P. Comi, U. Mazza, G. Saglio, C. Camaschella, P. Izzo, A. Cao, R. Galanello, E. Gimferrer, M. Baiget, and A. M. Gianni, Molecular comparison of δβ-thalassemia and hereditary persistence of fetal hemoglobin DNAs: Evidence of a regulatory area?, Proc. Natl. Acad. Sci. USA 79, 2347–2351 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    R. W. Jones, J. M. Old, R. J. Trent, J. B. Clegg, and D. J. Weatherall, Major rearrangement in the human β-globin gene cluster, Nature 291, 39–44 (1980).CrossRefGoogle Scholar
  48. 48.
    S. H. Orkin, S. C. Goff, and D. G. Nathan, Heterogeneity of DNA deletion in γδβ-thalassemia, J. Clin. Invest. 67, 878–884 (1981).PubMedCrossRefGoogle Scholar
  49. 49.
    L. H. T. van der Plog, A. Donings, M. Oort, D. Roos, L. Bernini, and R. A. Flavell, γ-β-Thalassaemia studies showing that deletion of the γ-and δ-genes influences β-globin gene expression in man, Nature 283, 637–642 (1980).CrossRefGoogle Scholar
  50. 50.
    R. Bernards and R. A. Flavell, Physical mapping of the globin gene deletion in hereditary persistence of foetal haemoglobin (HPFH), Nucl. Acids Res. 8, 1521–1534 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    D. Tuan, M. J. Murnane, J. K. deRiel, and B. G. Forget, Heterogeneity in the molecular basis of hereditary persistence of fetal haemoglobin, Nature 285, 335–337 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    P. Jagadeeswaran, D. Tuan, B. G. Forget, and S. M. Weissman, A gene deletion ending at the midpoint of a repetitive DNA sequence in one form of hereditary persistence of fetal haemoglobin, Nature 296, 469–470 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    R. W. Jones, J. M. Old, W. G. Wood, J. B. Clegg, and D. J. Weatherall, Restriction endonuclease maps of the β-like globin gene cluster in the British and Greek forms of HPFH and for one example of Gγβ+ HPFH, Br. J. Haematol. 50, 415–442 (1982).PubMedCrossRefGoogle Scholar
  54. 54.
    Th. Papayannopoulou, R. M. Lawn, G. Stamatoyannopoulos, and T. Maniatis, Greek (Aγ) variant of hereditary persistence of fetal haemoglobin: Globin gene organization and studies of expression of fetal haemoglobins in clonal erythroid cultures, Br. J. Haematol. 50, 387–399 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    J. M. Old, H. Ayyub, W. G. Wood, J. B. Clegg, and D. J. Weatherall, Linkage analysis of nondeletion hereditary persistence of fetal hemoglobin, Science 215, 981–982 (1982).PubMedCrossRefGoogle Scholar
  56. 56.
    J. F. Balsley, E. Rappaport, E. Schwartz, and S. Surrey, The γ-δ-β-globin gene region in Gγ-β+-hereditary persistence of fetal hemoglobin, Blood 59, 828–831 (1982).PubMedGoogle Scholar
  57. 57.
    R. W. Jones, J. M. Old, R. J. Trent, J. B. Clegg, and D. J. Weatherall, Restriction mapping of a new deletion responsible for Gγ(δβ)° thalassemia, Nucl. Acids Res. 9, 6813–6825 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Farquhar, R. Gelinas, B. Tatsis, J. Murray, M. Yagi, R. Mueller, and G. Stamatoyannopoulos, Restriction endonuclease mapping of γ-δ-β globin region in Gγ(β)+ HPFH and a Chinese Aγ HPFH variant, Am. J. Human Genet, 35, 611–620 (1983).Google Scholar
  59. 59.
    S. H. Orkin, H. H. Kazazian, Jr., S. E. Antonarakis, H. Ostrer, S. C. Goff, and J. P. Sexton, Abnormal RNA processing due to the coding region mutation of the βE globin gene, Blood 60, 56a (1982).Google Scholar
  60. 60.
    International Hemoglobin Information Center, Lists of variants, Hemoglobin 4, 215–228 (1980).CrossRefGoogle Scholar
  61. 61.
    H. F. Bunn, B. G. Forget, and H. M. Ranney, Human Hemoglobins, W. B. Saunders, Philadelphia (1977).Google Scholar
  62. 62.
    J. V. Neel, C. Satoh, H. B. Hamilton, M. Otake, K. Goriki, T. Kageoka, M. Fujita, S. Neriishi, and J. Asakawa, Search for mutations affecting protein structure in children of atomic bomb survivors: Preliminary report, Proc. Natl. Acad. Sci. USA 77, 4221–4225 (1980).PubMedCrossRefGoogle Scholar
  63. 63.
    J. V. Neel, H. W. Mohrenweiser, and M. H. Meisler, Rate of spontaneous mutation at human loci encoding protein structure, Proc. Natl. Acad. Sci. USA 77, 6037–6041 (1980).PubMedCrossRefGoogle Scholar
  64. 64.
    F. Vogel and R. Rathenberg, Spontaneous mutation in man, Adv. Hum. Genet. 5, 223–318 (1975).PubMedGoogle Scholar
  65. 65.
    A. G. Motulsky, Some evolutionary implications of biochemical variants in man, in: Proceedings VIII International Congress Anthropological Ethnological Sciences, Vol. 1, pp. 364–365, Science Council of Japan (1969).Google Scholar
  66. 66.
    M. Kimura and T. Ohta, Mutation and evolution at the molecular level, Genetics 73 (Suppl.), 19–35 (1973).PubMedGoogle Scholar
  67. 67.
    G. Stamatoyannopoulos, P. E. Nute, and M. Miller, De novo mutations producing unstable hemoglobins or hemoglobins M. I. Establishment of a depository and use of data to test for an association of de novo mutation with advanced parental age, Hum. Genet. 58, 396–404 (1981).PubMedCrossRefGoogle Scholar
  68. 68.
    G. Stamatoyannopoulos and P. E. Nute, De novo mutations producing unstable Hbs or Hbs M. II. Direct estimates of minimum nucleotide mutation rates in man, Hum. Genet. 60, 181–188 (1982).PubMedCrossRefGoogle Scholar
  69. 69.
    P. E. Nute and G. Stamatoyannopoulos, Estimates of mutation rates per nucleotide in man, based on observations of de novo hemoglobin mutants, in: Population and Biological Aspects of Human Mutation (E. B. Hook and I. H. Porter, eds.), pp. 337–347, Academic Press, New York (1981).Google Scholar
  70. 70.
    A. Gouttas, Ph. Fessas, H. Tsevrenis, and E. Xefteri, Description d’une nouvelle variété d’anémie hémolytique cogénitale étude (hématologique, électrophorétique et génétique) Sang 26, 911–919 (1955).PubMedGoogle Scholar
  71. 71.
    Th. Papayannopoulou and G. Stamatoyannopoulos, Stains for inclusion bodies, in: The Detection of Hemoglobinopathies (R. M. Schmidt, T. H. J. Huisman, and H. Lehmann, eds.), CRC Press, Cleveland (1974).Google Scholar
  72. 72.
    M. Rosenberg, Electrophoretic analysis of hemoglobin and isozymes in individual vertebrate cells, Proc. Natl. Aca. Sci. USA 67, 32–36 (1970).CrossRefGoogle Scholar
  73. 73.
    S. I. O. Anyaibe and V. E. Headings, Identification of hemoglobins in single erythrocytes by electrophoresis, Am. J. Hematol. 2, 307–315 (1977).PubMedCrossRefGoogle Scholar
  74. 74.
    Th. Papayannopoulou, T. C. McGuire, G. Lim, E. Garzel, P. E. Nute, and G. Stamatoyannopoulos, Identification of haemoglobin S in red cells and normoblasts, using fluorescent anti-Hb S antibodies, Br. J. Haematol. 34, 25–31 (1976).PubMedCrossRefGoogle Scholar
  75. 75.
    Th. Papayannopoulou, G. Lim, T. C. McGuire, V. Ahem, P. E. Nute, and G. Stamatoyannopoulos, Use of specific fluorescent antibodies for the identification of hemoglobin C in erythrocytes, Am. J. Hematol. 2, 105–112 (1977).PubMedCrossRefGoogle Scholar
  76. 76.
    P. E. Nute, Th. Papayannopoulou, B. Tatsis, and G. Stamatoyannopoulos, Toward a system for detecting somatic-cell mutations. V. Preparation of fluorescent antibodies to hemoglobin Hasharon, a human α-chain variant, J. Immunol. Methods 42, 35–44 (1981).PubMedCrossRefGoogle Scholar
  77. 77.
    G. Stamatoyannopoulos, P. E. Nute, Th. Papayannopoulou, T. McGuire, G. Lim, H. F. Bunn, and D. Rucknagel, Development of a somatic mutation screening system using Hb mutants. IV. Successful detection of red cells containing the human frameshift mutants Hb Wayne and Hb Cranston using monospecific fluorescent antibodies, Am. J. Human. Genet. 32, 484–496 (1980).Google Scholar
  78. 78.
    M. Seid-Akhavan, W. P. Winter, R. K. Abramson, and D. L. Rucknagel, Hemoglobin Wayne: A frameshift mutation detected in human hemoglobin alpha chains, Proc. Natl. Acad. Sci. USA 73, 882–886 (1976).PubMedCrossRefGoogle Scholar
  79. 79.
    H. F. Bunn, G. J. Schmidt, D. N. Haney, and R. G. Dluhy, Hemoglobin Cranston, an unstable variant having an elongated β chain due to nonhomologous crossover between two normal β chain genes, Proc. Natl. Acad. Sci. USA 72, 3609–3613 (1975).PubMedCrossRefGoogle Scholar
  80. 80.
    G. Stamatoyannopoulos, Possibilities for demonstrating point mutations in somatic cells, as illustrated by studies of mutant hemoglobins, in: Genetic Damage in Man Caused by Environmental Agents (K. Berg, ed.), pp. 49–62, Academic Press, New York (1979).Google Scholar
  81. 81.
    W. L. Bigbee, E. W. Branscomb, H. B. Weintraub, Th. Papayannopoulou, and G. Stamatoyannopoulos, Cell sorter immunofluorescence detection of human erythrocytes labeled in suspension with antibodies specific for hemoglobin S and C, J. Immunol. Methods 45, 117–127(1981).PubMedCrossRefGoogle Scholar
  82. 82.
    G. Stamatoyannopoulos and P. E. Nute, Screening of human erythrocytes for products of somatic mutation: An approach and a critique, in: Population and Biological Aspects of Human Mutation (E. B. Hook and I. H. Porter, eds.), pp. 265–273, Academic Press, New York (1981).Google Scholar
  83. 83.
    G. M. Maniatis and V. M. Ingram. Erythropoiesis during amphibian metamorphosis. II. Immunochemical study of larval and adult hemoglobins of Rana catesbeiana, J. Cell Biol. 49, 380–389 (1971).PubMedCrossRefGoogle Scholar
  84. 84.
    G. M. Maniatis and V. M. Ingram, Erythropoiesis during amphibian metamorphosis. III. Immunochemical detection of tadpole and frog hemoglobins (Rana catesbeiana) in single erythrocytes, J. Cell Biol. 49, 390–404 (1971).PubMedCrossRefGoogle Scholar
  85. 85.
    M. Flavin, Y. Blouquit, A. M. Duprat, P. Deparis, H. Tonthat, and J. Rosa, Hemoglobin ontogeny in the salamander Pleurodeles waltlii, in: Hemoglobins in Development and Differentiation (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 215–221, Alan R. Liss, New York (1981).Google Scholar
  86. 86.
    M. Reichlin, E. Bucci, C. Fronticelli, J. Wyman, E. Antonini, C. Ioppolo, and A. Rossi-Fanelli, The properties and interactions of the isolated α- and β-chains of human haemoglobin. IV. Immunological studies involving antibodies against the isolated chains, J. Mol. Biol. 17, 18–28 (1966).PubMedCrossRefGoogle Scholar
  87. 87.
    T. Nishimura, T. Kogo, K. Yokomuro, Y. Kimura, A. Kajita, and R. Shukuya, Immunological studies in the multiple hemoglobins of tadpole and frog of Rana catesbeiana, FEBS Lett. 36, 1–4 (1973).PubMedCrossRefGoogle Scholar
  88. 88.
    K. Shimizu and A. Hagiwara, Ontogeny of chicken hemoglobin. III. Immunological study of the heterogeneity of hemoglobin in development, Dev. Growth Diff. 15, 285–306 (1973).CrossRefGoogle Scholar
  89. 89.
    A. J. Tobin, B. S. Chapman, D. A. Hansen, L. Lasky, and S. E. Selvig, Regulation of embryonic and adult hemoglobin synthesis in chickens, in: Cellular and Molecular Regulation of Hemoglobin Switching (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 205–211, Grune and Stratton, New York (1979).Google Scholar
  90. 90.
    D. H. K. Chui, T. W. Brotherton, and J. Gauldie, Hemoglobin ontogeny in fetal mice: Adult hemoglobin in yolk sac derived erythrocytes, in: Cellular and Molecular Regulation of Hemoglobin Switching (G. Stamatoyannopoulos and A. W. Nienhuis, eds.), pp. 213–224, Grune and Stratton, New York (1979).Google Scholar
  91. 91.
    R. D. Jurd and N. Maclean, Detection of haemoglobin in red cells of Xenopus laevis by immunofluorescent double labelling, J. Microsc. 100 (Pt. 2), 213–217 (1973).CrossRefGoogle Scholar
  92. 92.
    J. Benbassat, The transition from tadpole to frog haemoglobin during natural amphibian metamorphosis. II. Immunofluorescence studies. J. Cell Sci. 16, 143–156 (1974).PubMedGoogle Scholar
  93. 93.
    F. W. Boerma and T. H. J. Huisman, Serologic investigations of human hemoglobins. II. Antibodies produced by isolated human hemoglobin types with known structural differences, J. Lab. Clin. Med. 63, 264–278 (1964).PubMedGoogle Scholar
  94. 94.
    M. Reichlin, M. Hay, and L. Levine, Antibodies to human A1 hemoglobin and their reaction with A2, S, C, and H hemoglobins, Immunochemistry 1, 21–30 (1964).PubMedCrossRefGoogle Scholar
  95. 95.
    M. Reichlin, Quantitative immunological studies on single amino acid substitution in human hemoglobin: Demonstration of specific antibodies to multiple sites, Immunochemistry 11, 21–27 (1974).PubMedCrossRefGoogle Scholar
  96. 96.
    R. D. Schreiber and M. Reichlin, The occurrence of shared idiotypic specificity among the goat antibodies that distinguish human hemoglobin S from A1, J. Immunol. 113, 359–366 (1974).PubMedGoogle Scholar
  97. 97.
    M. Reichlin and R. W. Noble, Immunochemistry of protein mutants, in: Immunochemistry of Proteins (M. Z. Atassi, ed.), vol. 2, pp. 311–251, Plenum Press, New York (1977).CrossRefGoogle Scholar
  98. 98.
    S. H. Boyer, M. L. Boyer, A. N. Noyes, and T. K. Beiding, Immunological basis for detection of sickle cell hemoglobin phenotypes in amniotic fluid erythrocytes, Ann. N.Y. Acad. Sci. 241, 699–713 (1974).CrossRefGoogle Scholar
  99. 99.
    P. T. Rowley, R. A. Doherty, C. Rosecrans, and E. Cernichiari, Sickle hemoglobin: A specific radioimmunoassay, Blood 43, 607–611 (1974).PubMedGoogle Scholar
  100. 100.
    F. A. Garver, M. B. Baker, C. S. Jones, M. Gravely, G. Altay, and T. H. J. Huisman, Radioimmunoassay for abnormal hemoglobins, Science 196, 1334–1336 (1977).PubMedCrossRefGoogle Scholar
  101. 101.
    J. G. Curd, N. S. Young, and A. N. Schechter, Antibodies to an NH2-terminal fragment of βs globin. II. Specificity and isolation of antibodies for the sickle mutation, J. Biol. Chem. 251, 1290–1295 (1976).PubMedGoogle Scholar
  102. 102.
    A. M. Dozy and T. H. J. Huisman, Studies on the heterogeneity of hemoglobin. XIV. Chromatography of normal and abnormal human hemoglobin types on CM-Sephadex, J. Chromatogr. 40, 62–70 (1969).PubMedCrossRefGoogle Scholar
  103. 103.
    A. M. Dozy, E. F. Kleihauer, and T. H. J. Huisman, Studies on the heterogeneity of hemoglobin. XIII. Chromatography of various human and animal hemoglobin types on DEAE-Sephadex, J. Chromatogr. 32, 723–727 (1968).PubMedCrossRefGoogle Scholar
  104. 104.
    J. Porath, R. Axén, and S. Ernback, Chemical coupling of proteins to agarose, Nature 215, 1491–1492 (1967).PubMedCrossRefGoogle Scholar
  105. 105.
    B.T. Tozer, K. A. Cammack, and H. Smith, Separation of antigens by immunological specificity. 2. Release of antigen and antibody from their complexes by aqueous carbon dioxide, Biochem J. 84, 80–93 (1962).PubMedGoogle Scholar
  106. 106.
    T. B. Crawford, T. C. McGuire, and J. B. Henson, Detection of equine infectious anemia virus in vitro by immunofluorescence, Arch. Ges. Virusforsch. 34, 332–339 (1971).PubMedCrossRefGoogle Scholar
  107. 107.
    M. Dan and A. Hagiwara, Detection of two types of hemoglobin (Hb A and Hb F) in single erythrocytes by fluorescent antibody technique, Jpn. J. Hum. Genet. 12, 55–61 (1967).Google Scholar
  108. 108.
    G. Stamatoyannopoulos, M. Farquhar, D. Lindsley, M. Brice, Th. Papayannopoulou, and P. E. Nute, Monoclonal antibodies specific for globin chains, Blood 61, 530–539 (1983).PubMedGoogle Scholar
  109. 109.
    G. Stamatoyannopoulos and P. E. Nute, Detection of somatic mutants of hemoglobin, in: Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk (F. J. de Serres and W. Sheridan, eds.), pp. 29–38, Plenum Press, New York (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • George Stamatoyannopoulos
    • 1
  • Peter Nute
    • 2
  • Dale Lindsley
    • 1
  • Margaret Farquhar
    • 1
  • Martha Brice
    • 1
  • Betty Nakamoto
    • 1
  • Thalia Papayannopoulou
    • 3
  1. 1.Division of Medical Genetics, Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of AnthropologyUniversity of WashingtonSeattleUSA
  3. 3.Division of Hematology, Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations