Schottky Barriers on Amorphous Si and Their Applications

  • R. J. Nemanich
  • M. J. Thompson


While amorphous Si films had been produced for several years, it was in the 1960s that significant efforts were undertaken to produce pure a-Si which might be used for thin film devices. Researchers proceeded with diligence, but the norm of the time was that very few transport measurements exhibited consistent results between different samples. Furthermore, even brief exposure to air produced changes which could not be reversed by standard etching procedures. The discovery that changed all this was the method of producing a-Si by rf-plasma decomposition of silane (SiH4) gas.(1) While it was initially thought that the material was pure (i.e., devoid of H), it was later shown that at least 3 at. % and as much as 50 at. % H could be incorporated into the film. It was found that stable and reproducible films could be produced in which the Fermi energy could be shifted by “substitutional” doping. This material thus represented a true semiconductor and has nucleated a whole field of research into its properties and applications.


Electron Spin Resonance Barrier Height Schottky Barrier Schottky Diode Deep Level Transient Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Chittick, J.H. Alexander, and H.F. Sterling, J. Electrochem. Soc. 116, 77 (1969).CrossRefGoogle Scholar
  2. 2.
    CR. Wronski, D.E. Carlson, and R.E. Daniel, Appl. Phys. Lett. 29, 602 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Loveland, W.E. Spear, and A. Al-Sharbaty, J. Non-Cryst. Solids 13, 55 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    G.A.N. Connell and J.R. Pawlik, Phys. Rev. B 13, 787 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    J.C. Knights, Jpn. J. Appl. Phys. 18, suppl. 18–1, 101 (1979).Google Scholar
  6. 6.
    M.P. Rosenblum, M.J. Thompson, and R.A. Street, in Tetrahedrally Bonded Amorphous Semiconductors, (R.A. Street, D.K. Biegelsen, and J.C. Knights, eds.), American Institute of Physics, New York (1981), p. 42.Google Scholar
  7. 7.
    B.A. Scott, J.A. Reimer, R.M. Plecenik, E.E. Simonyi, and W. Reuter, Appl. Phys. Lett. 40, 973 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    M.H. Brodsky, M. Cardona, and J.J. Cuomo, Phys. Rev. B 16, 3556 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Knights, G. Lucovsky, and R.J. Nemanich, Phil Mag. B 37, 467 (1978).CrossRefGoogle Scholar
  10. 10.
    G. Lucovsky, R.J. Nemanich, and J.C. Knights, Phys. Rev. B 19, 2064 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    M. Cardona, Phys. Status Solidi B 118, 463 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    S.C. Moss and D. Adler, Comments Solid State Phys. 5, 47 (1973).Google Scholar
  13. 13.
    N. Maley, L.J. Pilione, S.T. Kshirsagar, and J.S. Lannin, Physica 118B, 880 (1983).Google Scholar
  14. 14.
    R.A. Street, J.C. Knights, and D.K. Biegelson, Phys. Rev. B 18, 1880 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Knights and R.A. Lujan, Appl. Phys. Lett. 35, 244 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    RJ. Nemanich, D.K. Biegelson, and M.P. Rosenblum, J. Phys. Soc. Jpn. 49A, 1189 (1980).Google Scholar
  17. 17.
    J.A. Reimer, R.W. Vaughan, and J.C. Knights, Phys. Rev. B 24, 3360 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Street, Adv. Phys. 30, 593 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    R.S. Crandall, J. Phys. (Paris) 42, Suppl. 10, C4–413 (1981).Google Scholar
  20. 20.
    G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    D.V. Lang, J.D. Cohen, and J.P. Harbison, Phys. Rev. B 25, 5285 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    T. Tiedje and A. Rose, Solid State Commun. 37, 49 (1981).ADSCrossRefGoogle Scholar
  23. 23.
    W.B. Jackson, Solid State Commun. 44, 477 (1982).ADSCrossRefGoogle Scholar
  24. 24.
    W.B. Jackson, R.J. Nemanich, and N.M. Amer, Phys. Rev. B 27, 4861 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Street, Phys. Rev. B 27, 4924 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    W.E. Spear and P.G. LeComber, Solid State Commun. 17, 1193 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    M. Tanelean, Phil Mag. B 45, 435 (1982).CrossRefGoogle Scholar
  28. 28.
    W.B. Jackson, D.K. Biegelsen, RJ. Nemanich, and J.C. Knights, Appl. Phys. Lett. 42, 105 (1983).ADSCrossRefGoogle Scholar
  29. 29.
    W.E. Spear, P.G. LeComber, and A.J. Snell, Phil. Mag. B 38, 303 (1978).CrossRefGoogle Scholar
  30. 30.
    E.H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).Google Scholar
  31. 31.
    I. Chen and S. Lee, J. Appl. Phys. 53, 1045 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Freeouf, T.N. Jackson, S.E. Laux, and J.M. Woodall, J. Vac. Sci. Technol 21, 570 (1982).ADSCrossRefGoogle Scholar
  33. 33.
    C.R. Wronski and D.E. Carlson, Solid State Commun. 23, 421 (1977).ADSCrossRefGoogle Scholar
  34. 34.
    MJ. Thompson, N.M. Johnson, RJ. Nemanich, and C.C. Tsai, Appl. Phys. Lett. 39, 274 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Thompson, M.M. Alkaisi, and J. Allison, IEE Proc. 127, 213 (1980).CrossRefGoogle Scholar
  36. 36.
    M.M. Alkaisi and M.J. Thompson, Solar Cells 1, 91 (1979/1980).ADSCrossRefGoogle Scholar
  37. 37.
    A. Madan, W. Czubatyj, J. Yang, M.S. Shur, and M.P. Shaw, Appl. Phys. Lett. 40, 234 (1982).ADSCrossRefGoogle Scholar
  38. 38.
    A. Deneuville and M.H. Brodsky, J. Appl. Phys. 50, 1414 (1979).ADSCrossRefGoogle Scholar
  39. 39.
    P. Viktorovitch, D. Jousse, A. Chenevas-Paule, and L. Vieux-Rochas, Rev. Phys. Appl. 14, 201 (1979).ADSCrossRefGoogle Scholar
  40. 40.
    A.J. Snell, K.D. Mackenzie, P.G. LeComber, and W. E. Spear, Phil Mag. B 40, 1 (1979).Google Scholar
  41. 41.
    A.J. Snell, K.D. Mackenzie, P.G. LeComber, and W. E. Spear, J. Non-Cryst. Solids 35 & 36, 593 (1980).CrossRefGoogle Scholar
  42. 42.
    P. Viktorovitch and D. Jousse, J. Non-Cryst. Solids 35 & 36, 569 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    J. Beichler, W. Fuhs, H. Mell, and H.M. Welsch, J. Non-Cryst. Solids 35 & 36, 587 (1980).ADSCrossRefGoogle Scholar
  44. 44.
    H. Fernandez-Canque, J. Allison, and MJ. Thompson, J. Appl. Phys. (in press).Google Scholar
  45. 45.
    C.R. Wronski, B. Abeles, G.D. Cody, and T. Tiedje, Appl. Phys. Lett. 37, 96 (1980).ADSCrossRefGoogle Scholar
  46. 46.
    T. Yamamoto, Y. Mishima, M. Hirose, and Y. Osaka, Jpn. J. Appl. Phys. 20, Supp. 20–2, 185 (1981).Google Scholar
  47. 47.
    W.B. Jackson, RJ. Nemanich, and MJ. Thompson (to be published).Google Scholar
  48. 48.
    R.J. Nemanich, MJ. Thompson, W.B. Jackson, C.C. Tsai, and B.L. Stafford, J. Vac. Sci Technol. B1, 519 (1983).Google Scholar
  49. 49.
    K.N. Tu and J.W. Mayer, in Thin Films Interdiffusion and Reactions (J.M. Poate, K.N. Tu, and J.W. Mayer, eds.), John Wiley and Sons (1978), p. 359.Google Scholar
  50. 50.
    G. Ottaviani, J. Vac. Sci. Technol. 16, 1112 (1979).ADSCrossRefGoogle Scholar
  51. 51.
    G.A.N. Connell, RJ. Nemanich, and C.C. Tsai, Appl. Phys. Lett. 36, 31 (1980).ADSCrossRefGoogle Scholar
  52. 52.
    RJ. Nemanich, C.C. Tsai, MJ. Thompson, and T.W. Sigmon, J. Vac. Sci. Technol. 19, 685 (1981).ADSCrossRefGoogle Scholar
  53. 53.
    S.M. Pietruszko, K.L. Narasimhan, and S. Guha, J. Vac. Sci. Technol. 20, 801 (1982).ADSCrossRefGoogle Scholar
  54. 54.
    S.R. Herd, P. Chaudhari, and M.H. Brodsky, J. Non-Cryst. Solids 7, 309 (1972).ADSCrossRefGoogle Scholar
  55. 55.
    C.C. Tsai, M.J. Thompson, and RJ. Nemanich, J. Phys. (Paris) 42, Suppl. 10, C4–1077 (1981).Google Scholar
  56. 56.
    C.C. Tsai, R.J. Nemanich, and MJ. Thompson, J. Vac. Sci. Technol. 21, 632 (1982).ADSCrossRefGoogle Scholar
  57. 57.
    C.C. Tsai, R.J. Nemanich, MJ. Thompson, and B.L. Stafford, Physica 117B & 118B, 953 (1983).Google Scholar
  58. 58.
    C.C. Tsai and RJ. Nemanich, J. Non-Cryst. Solids 35–36, 1203 (1980).CrossRefGoogle Scholar
  59. 59.
    T. Tiedje, J.M. Cebulka, D.L. Morel, and B. Abeles, Phys. Rev. Lett. 46, 1425 (1981).ADSCrossRefGoogle Scholar
  60. 60.
    T. Tiedje, A. Rose, and J.M. Cebulka, AIP Conf. Proc, Vol. 73, American Institute of Physics, New York (1981), p. 197.CrossRefGoogle Scholar
  61. 61.
    N.M. Johnson, Appl. Phys. Lett. 42, 981 (1983).ADSCrossRefGoogle Scholar
  62. 62.
    D.E. Carlson and C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976).ADSCrossRefGoogle Scholar
  63. 63.
    J.I.B. Wilson, J. McGill, and S. Kinmond, Nature 272, 152 (1978).ADSCrossRefGoogle Scholar
  64. 64.
    A. Madan, J. McGill, W. Czubatyj, J. Yang, and S.R Ovshinsky, Appl. Phys. Lett. 37, 826 (1980).ADSCrossRefGoogle Scholar
  65. 65.
    A. Matsuda, S. Yamasaki, K. Nakagawa, H. Okushi, K. Tanaka, S. Ilzima, M. Masunura, and H. Yamamoto, Jpn. J. Appl. Phys. Lett. 19, L305 (1980).ADSCrossRefGoogle Scholar
  66. 66.
    D.E. Carlson and C.W. Magee, in Proc. 2nd E.C. Photovoltaic Solar Energy Conference (R. Van Overstraeten and W. Palz, eds.). Reidel, Boston (1979), p. 312.Google Scholar
  67. 67.
    D.E. Carlson (private communication).Google Scholar
  68. 68.
    Y. Kuwano and M. Ohnishi, J. Phys. (Paris) 42, Suppl. 10, C4–1155 (1981).Google Scholar
  69. 69.
    AJ. Snell, K.D. Mackenzie, W.E. Spear, and P.G. LeComber, Appl. Phys. 24, 357 (1981).ADSCrossRefGoogle Scholar
  70. 70.
    M.J. Powell, B.C. Easton, and O.F. Hill, Appl. Phys. Lett. 38, 794 (1981).ADSCrossRefGoogle Scholar
  71. 71.
    H.C. Tuan, M.J. Thompson, N.M. Johnson, and R.A. Lujan, IEEE Elect. Dev. Lett. EDL-3, 357 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. J. Nemanich
    • 1
  • M. J. Thompson
    • 1
  1. 1.Xerox Palo Alto Research CenterPalo AltoUSA

Personalised recommendations