Point contact diodes have been in use for many decades for mixer and detector application from uhf through millimeter-wave frequencies. The first published paper on the subject appeared in 1874 when Braun reported the asymmetrical nature of conduction between metal points and crystals. Point contacts are relatively unsophisticated devices consisting of a metal whisker making pressure contact with the semiconductor chip, normally tungsten for silicon and phosphorus bronze for germanium and gallium arsenide. The point contact diodes are generally encapsulated in axial lead glass, axial prong ceramic, cartridge-type ceramic (1N21 and IN23), or metal coaxial enclosures. In the early 1960s Schottky barrier diodes were introduced for similar applications. The Schottky diode, also a metal-semiconductor rectifying junction, is formed by depositing a variety of metals on n-type or p-type semiconductor materials by chemical deposition (electroplating), evaporation or sputtering; n-type silicon and n-type gallium arsenide (GaAs) are the most commonly used materials. Owing to the need for higher cutoff frequency, GaAs devices are preferred at millimeter-wave frequencies, since electrons have a higher mobility in GaAs than in silicon.


Schottky Barrier Gallium Arsenide Noise Figure Schottky Diode Local Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RJ. Archer and M.M. Atalia, Ann. NY Acaci. Sci. 101, 697–709 (1963).CrossRefGoogle Scholar
  2. 2.
    D. Kahng and M.P. Lepselter, Planar epitaxial silicon Schottky barrier diodes, Bell Syst. Tech. J. 44, 1525–1528 (1965).Google Scholar
  3. 3.
    Y. Anand, X-band high burnout resistance Schottky barrier diodes, IEEE Trans. Electron Devices ED-24, 1330–1336 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Anand and A. Christou, Millimeter high-burnout GaAs Schottky barrier diodes, International Electron Device Meeting, IEEE, Washington, D.C. (1979).Google Scholar
  5. 5.
    J.C. Irvin and D. Young, Millimeter frequency conversion using Au-w-type GaAs Schottky barrier epitaxy diode with a novel contacting technique, Proc. IEEE 53, 2130–2131 (1965).Google Scholar
  6. 6.
    M.P. Lepselter, Beam-lead technology, Bell Syst. Tech. J. 45, 233–253, (1966).Google Scholar
  7. 7.
    R.D. Dupuis et al., Inst. Phys. Conf. 45, 1–9 (1978).Google Scholar
  8. 8.
    A.Y. Cho and H.C. Casey, Properties of Schottky barriers and p-n junction prepared with GaAs and AlxGa1-xAs molecular beam epitaxy layers, J. Appl. Phy. 45, 1258–1263 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    D.N. Held and A. R. Kerr, Conversion loss and noise of microwave and millimeter wave mixers Part I and II, IEEE Trans. Microwave Theory Tech. MIT-26, 49–61 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    A.R. Kerr, Low-noise room-temperature and cryogenic mixers for 80–120 GHz, IEEE Trans. Microwave Theory, Tech. MTT-23, 781–787 (1975).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    E.R. Carlson, M.V. Schneider, and T.F. McMaster, Subharmonically pumped millimeter wave mixers, IEEE Trans. Microwave Theory Tech. MTT-26, 706–715 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    C. Baron, A simplified theory of crystal mixer, Royal Radar Development Establishment Report 378 (1958).Google Scholar
  13. 13.
    H.C. Torrey and Whitmer, Crystal Rectifiers, MIT Radiation Lab. Ser., Vol. 15, McGraw-Hill, New York (1948), pp. 111–173, 293–296.Google Scholar
  14. 14.
    Y. Anand, Characterization of microwave silicon mixer diodes, Ph.D. dissertation, Lehigh University, Bethlehem, Pennsylvania (1970).Google Scholar
  15. 15.
    M.R. Barber, Noise-figure and conversion loss of the Schottky barrier mixer diodes, IEEE Trans. Microwave Theory Tech. MIT-15, 629–635 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    A.A.M. Saleh, Theory of resistive mixers, PH.D. dissertion, Massachusetts Institute of Technology, Cambridge, Massachusetts (1970).Google Scholar
  17. 17.
    S. Egami, Nonlinear analysis and computer aided design of resistive mixer diodes, IEEE Trans. Microwave Theory Tech. MTT-22, 270–275 (1975).ADSGoogle Scholar
  18. 18.
    A.R. Kerr, Noise and loss in balanced and subharmonically pumped mixers Part I— Theory, IEEE Trans. Microwave Theory Tech. MMT-27, 135–140 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    A.R. Kerr, Noise and loss in balanced and subharmonically pumped mixers Part II— application, IEEE Trans. Microwave Theory Tech. MTT-27, 938–950 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    P.H. Siegel and A.R. Kerr, NASA Tech. Memo. NASA TM-X-80324, (1979).Google Scholar
  21. 21.
    N.J. Keen and R.A. Linke, Noise characterization for resistive mixers, Diode Mixers at Millimeter Wavelength Workshop, Max Planck Institute, April 26–28 (1977).Google Scholar
  22. 22.
    W. Baechtold, Noise behavior of GaAs field-effect transistors with short gates, IEEE Trans. Electron Devices 19, 674–680 (1972).CrossRefGoogle Scholar
  23. 23.
    A. Uhlir, Shot noise in p-n junction frequency converters, Bell Syst Tech. J. 37, 951–988 (1958).Google Scholar
  24. 24.
    A. Van der Ziel, Theory of shot noise in junction diodes and junction transistors, Proc. IRE 43, 1639–1646 (1955).CrossRefGoogle Scholar
  25. 25.
    C.T. Sah and F.H. Heilscher, Evidence of the surface origin of the 1/f noise, Phys. Rev. Lett. 17, 956–958 (1966).ADSCrossRefGoogle Scholar
  26. 26.
    L.I. Schiff, Noise in crystal rectifiers. National Defense Research Committee Report 14–126, University of Pennsylvania (1963).Google Scholar
  27. 27.
    V.J. Weisskoph, On the theory of the noise in conductors, semiconductors and crystal rectifiers, National Defense Research Committee Report 14–133, University of Pennsylvania (1963).Google Scholar
  28. 28.
    O. Jantch, A. theory of 1/f noise at semiconductor surfaces, Solid State Electron. 11, 267–272 (1968).ADSCrossRefGoogle Scholar
  29. 29.
    O. Jantch, Inversion behavior of silicon rectifier in moist gases, Z. Naturforsch. 15, 141 (1960).ADSGoogle Scholar
  30. 30.
    M.E. Sprinks, G.T.G. Robinson, and B.E. Bosch, The frequency dependence of noise temperature ratio in microwave crystals, Brit. J. Appl. Phys. 8, 275 (1957).ADSCrossRefGoogle Scholar
  31. 31.
    P.H. Miller, Noise spectrum of crystal rectifiers, Proc. IRE 35, 252–256 (1947).CrossRefGoogle Scholar
  32. 32.
    H.T. Friis, Noise figures of radio receivers, Proc. IRE 32, 419–422 (1944).CrossRefGoogle Scholar
  33. 33.
    A.M. Cowley and H.O. Sorenson, Quantitative comparison of solid state microwave detectors, IEEE Trans. Microwave Theory Tech. MTT-14, 588–602 (1966).ADSCrossRefGoogle Scholar
  34. 34.
    E.R. Beringer, Crystal detectors and the crystal video receivers, MIT Radiation Laboratory Report 638, November 16 (1944).Google Scholar
  35. 35.
    A. Uhlir, Characterization of crystal diodes for low-level microwave detection, Microwave J. 59–67 (1963).Google Scholar
  36. 36.
    J.F. Reynolds and M.R. Rosenzweig, Learn the language of mixer specification, Microwaves 17, 72–80 (1978).Google Scholar
  37. 37.
    W. Schottky Naturwissenschaften 26, 843 (1939).ADSCrossRefGoogle Scholar
  38. 38.
    M.M. Atalia, Metal semiconductor Schottky barriers, devices and applications, in Proc. Munich Symp. Microelectronics, R. Oldenbourg-Verlag, Munich, pp. 123–157 (1966).Google Scholar
  39. 39.
    S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York (1969).Google Scholar
  40. 40.
    H.A. Watson, Microwave Semiconductor Devices and their Circuit Applications, McGraw-Hill, New York (1969).Google Scholar
  41. 41.
    T.J. Viola, R.J. Mattauch, United theory of high frequency noise in Schottky barriers, J. Appl. Phys. 44, 2805–2808 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    M.V. Schoeider, Metal semiconductor junctions as frequency converters, in Infrared and Millimeter Waves (K.J. Bulton Ed.) Vol. 6, pp. 209–275, Academic Press (1982).Google Scholar
  43. 43.
    W.M. Kelley and G.T. Wrixon, Optimization of Schottky barrier diodes for low-noise, low-conversion operation at near millimeter-wave wavelength, in Infrared and Millimeter Waves, (K.J. Bulton, ed.), Vol. 3, pp. 77–110, Academic Press, New York (1980).Google Scholar
  44. 44.
    P. Kennedy, Spreading resistance in cylindrical semiconductor devices, J. Appl. Phys. 31, 1490–1497 (1960).ADSCrossRefGoogle Scholar
  45. 45.
    L.E. Dickens, Spreading resistance as a function of frequency, IEEE Trans. Microwave Theory Tech. MIT-15, 101–109 (1967).ADSCrossRefGoogle Scholar
  46. 46.
    B.J. Clifton, W.T. Lindly, R.W. Chick, and R.A. Cohen, Proceedings of Third Biennial Cornell Electrical Engineering Conference, 1971, pp. 463–475.Google Scholar
  47. 47.
    M.L. Korwin-Pawlowski and E.L. Heasell, Solid State Electron. 18, 849 (1975).ADSCrossRefGoogle Scholar
  48. 48.
    W.M. Kelly and G.T. Wrixon, Proc. Int. Conf. Submillimeter Waves Appl. 3rd Guildford (1978).Google Scholar
  49. 49.
    M. McColl and M.F. Millea, J. Electron Mater. 5, 191, 208 (1976).Google Scholar
  50. 50.
    A. Christou, W.T. Anderson, and M.L. Bark, International Electron Device Meeting, IEEE, Washington, D.C., pp. 449–451 (1980)CrossRefGoogle Scholar
  51. 51.
    F.A. Kroger, G. Dimer, and H.A. Klasens, Nature of an ohmic contact metal-semiconductor contact, Phys. Rev. 103, 279 (1956).ADSCrossRefGoogle Scholar
  52. 52.
    A.Y.C. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers, Solid State Electon. 13, 239–247 (1970).ADSCrossRefGoogle Scholar
  53. 53.
    J. Bardeen, Surface states and rectification at a metal-semiconductor contact, Phys. Rev. 71, 717–727 (1947).ADSCrossRefGoogle Scholar
  54. 54.
    S.M. Sze et al, Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers, J. Appl. Phys. 35, 2534 (1964).ADSCrossRefGoogle Scholar
  55. 55.
    B.L. Smith and E.H. Rhoderick, Possible source of error in the deduction of semiconductor impurity concentration from Schottky barrier (C, V) characteristics, J. Phys. D. 2, 465–467 (1969).ADSCrossRefGoogle Scholar
  56. 56.
    M.J. Turner and E.H. Rhoderick, Metal-silicon Schottky barriers, Solid State Electron. II, 291–300 (1968).CrossRefGoogle Scholar
  57. 57.
    C.F. Genzabella and C. Howell, Gallium arsenide Schottky mixer diodes, Proc. First Int. Symp. Gallium Arsenide (Reading, England), 1966, Inst. Phys. Soc. Conf. Ser. 3, pp. 131–137.Google Scholar
  58. 58.
    W.J. Moroney and Y. Anand, Low barrier height Gallium arsenide microwave Schottky diodes using gold—germanium alloy, in Proc. Third Int. Symp. Gallium Arsenide (Reading, England), 1970, Inst. Phys. Soc. Conf. Ser. 3.Google Scholar
  59. 59.
    N. Braslave, J.B. Gunn, and J.L. Staples, Metal-semiconductor contacts for GaAs bulk effect devices, Solid-State Electron. 10, 381 (1967).ADSCrossRefGoogle Scholar
  60. 60.
    Y. Anand, Low barrier height ion implanted GaAs mixer diodes, Sixth Biennial Cornell University Conference, August 16–18 (1977).Google Scholar
  61. 61.
    J.M. Shannon, Increasing the effective height of a Schottky barrier using low energy ion implantation, Appl. Phys. Lett. 25(1), 75 (1974).ADSCrossRefGoogle Scholar
  62. 62.
    A. Christou, W. Anderson, J.E. Davey, and Y. Anand, A low barrier height Ge-GaAs millimeter wave mixer diode, Seventh Biennial Cornell University Conference, August 14–16 (1979).Google Scholar
  63. 63.
    Y. Anand, Low barrier height ion implanted silicon Schottky barrier diode, IEEE Elec. Device Conf., Washington, D.C., December, 1977.Google Scholar
  64. 64.
    Y. Anand and Steve Ellis, Manufacturing technology program for a high-burnout silicon Schottky barrier mixer diodes for Navy Avionics M/A-COM Silicon Products, Inc., Burlington, Massachusetts Final Report, Contract No. N00173–79-C-0107 (1982).Google Scholar
  65. 65.
    Y. Anand, Zero bias Schottky barrier detector diodes, U.S. Patent 3,968,272 (1976).Google Scholar
  66. 66.
    A.R. Kerr and Y. Anand, Schottky diode MM detectors with improved sensitivity and dynamic range, Microwave J. 67–71 (1981).Google Scholar
  67. 67.
    Y. Anand, X-band image enhancement mixer, IEEE Solid State Circuits Conference, Philadelphia, Pennsylvania (1968).Google Scholar
  68. 68.
    D. Steinbrecker, private communication (1982).Google Scholar
  69. 69.
    L.E. Dickens and D.W. Maki, A new “phased-type” image enhanced mixer, IEEE Trans. Microwave Theory Tech. MTT-5, 149–151 (1975).Google Scholar
  70. 70.
    Y. Utsumi, Analysis of image recovery down converter may be planar circuit mounted in waveguide, IEEE Trans. Microwave Theory Tech. Vol. MTT-30, 858–868 (1982).ADSCrossRefGoogle Scholar
  71. 71.
    J.B. Cahalan, J.E. Degenford, and M. Cohen, An integrated Z-band, image and sum frequency enhanced mixer with 1 GHz IF, IEEE MTTS Digest 16–17 (1971).Google Scholar
  72. 72.
    L.T. Yuan, Low noise octave bandwidth mixer, IEEE Conf. Digest MTTS, San Diego, California, pp. 698–704 (1977).Google Scholar
  73. 73.
    R.A. Linke, M.V. Schneider, and A.Y. Cho, Cryogenic millimeter-wave receiver using molecular beam epitaxy diodes, IEEE Trans. Microwave Theory Tech. MTT-26, 935–938 (1978).ADSCrossRefGoogle Scholar
  74. 74.
    N.J. Keen, W.M. Kelly, and G.T. Wrixon, Pumped Schottky diodes with noise temperature of less than 100 K at 115 GHz, Electron Lett. 15, 689–690 (1979).ADSCrossRefGoogle Scholar
  75. 75.
    E.R. Carlson and M.V. Schneider, Subharmonically pumped millimeter wave receivers, Int. Conf. Infrared Millimeter Wave their Appl. Tech. Dig. 4th, pp. 82–83 (1979).Google Scholar
  76. 76.
    S. Weinreb, Unpublished report (1981).Google Scholar
  77. 77.
    A.R. Kerr, RJ. Mattauch, and J.A. Grange, A new mixer design for 140–220 GHz, IEEE Trans. Microwave Theory Tech. MTT-25, 399–401 (1977).ADSCrossRefGoogle Scholar
  78. 78.
    S.T. Eng., Low noise properties of microwave backward diodes, IRE Trans. Microwave Theory Tech. MTT-9, 419–425 (1961).ADSCrossRefGoogle Scholar
  79. 79.
    Y. Anand, Low frequency noise in Schottky barrier diodes, Proc. IEEE (Lett.) 57, 855–856 (1969).Google Scholar
  80. 80.
    Y. Anand, unpublished report (1982).Google Scholar
  81. 81.
    E. Kollberg and H. Zirath, On the optimization of cryogenic mixers, 12th European Microwave Conference Helsenki, Finland (1982).Google Scholar
  82. 82.
    J.A. Calviello and J.E. Wallace, Performance and reliability of an improved high-temperature GaAs Schottky junction and native oxide passivation, IEEE Trans. Electron Devices ED-24, 698–704 (1977).ADSCrossRefGoogle Scholar
  83. 83.
    Y. Anand and W.J. Moroney, Microwave mixer and detector diodes, Proc. IEEE 59, 1182–1190(1970).CrossRefGoogle Scholar
  84. 84.
    T.F. McMaster et al., Subharmonically pumped millimeter-wave mixer built with notch front and beam lead diodes, IEEE Conf. Digest MTT-5, San Diego, California, pp. 389–391 (1977).Google Scholar
  85. 85.
    G.T. Wrixon, Low-noise diodes and mixers 1–2mm wavelength region, IEEE Trans. Microwave Theory Tech. MTT-22, 1159–1165 (1974).ADSCrossRefGoogle Scholar
  86. 86.
    R.J. Baur, M. Cohen, J.M. Cotton, and R.F. Packard, Millimeter wave semiconductor diode detectors, mixers and frequency multipliers, Proc. IEEE 54, 595–605 (1966).CrossRefGoogle Scholar
  87. 87.
    K. Tomiyasu, On spurious outputs from high-power pulsed microwave tubes and their control, IRE Trans. Microwave Theory Tech. MTT-9, 480–484 (1961).ADSCrossRefGoogle Scholar
  88. 88.
    Y. Anand, G. Morris, and V. Higgins, Electrostatic failure of X-band silicon Schottky barrier diodes conference, September 1979, Denver, Colorado, IEEE EOS/ESD.Google Scholar
  89. 89.
    G.E. Morris, Y. Anand, V. Higgins, C. Cook, and G. Hall, RF burnout of mixer diodes as induced under controlled laboratory conditions and correlation to simulated system performance, MTT Symp. Rec., Palo Alto, pp. 182–183 (1975).Google Scholar
  90. 90.
    Y. Anand, X-band high-burnout silicon Schottky barrier diodes, Microwave J. 55–61 (1979).Google Scholar
  91. 91.
    M.P. Lepselter and S.M. Sze, Silicon Schottky barrier diodes with near ideal I-V characteristics, Bell Syst. Tech. J. 47, 195–208 (1968).Google Scholar
  92. 92.
    H.M. Day and A.C. McPherson, Design and fabrication of high-burnout Schottky crystal video diodes, Solid State Electron. 15, 409–416 (1972).CrossRefGoogle Scholar
  93. 93.
    Y. Anand, RF burnout dependence on variation in barrier capacitance of mixer diodes, Proc. IEEE (Lett.) 61, 247–248 (1973).Google Scholar
  94. 94.
    W.J. Moroney and Y. Anand, Reliability of microwave mixer diodes, presented at Reliability Symposium, Las Vegas, April 1972.Google Scholar
  95. 95.
    G.E. Morris, G.A. Hall, C.F. Cook, and V.J. Higgins, Investigation of RF induced burnout in microwave mixer diodes: A continuing study, presented at MTT Int. Symp., Atlanta, Georgia, June 12–14 (1974).Google Scholar
  96. 96.
    Y. Anand, High-burnout mixer diodes, presented at IEEE Elec. Device Conf., Washington, D.C., December (1974).Google Scholar
  97. 97.
    W.H. Weisenberger, A. Christou, and Y. Anand, High spatial resolution scanning auger spectroscopy applied to analysis of X-band diode, J. Vac. Sci. Technol. 12(6), 1365–1368 (1975).ADSCrossRefGoogle Scholar
  98. 98.
    Y. Anand and A. Christou, Millimeter high-burnout GaAs, Schottky Barrier Diodes, IEDM, Washington, D.C. 1979.Google Scholar
  99. 99.
    A. Christou and Y. Anand, GaAs mixer diode burnout mechanisms at 36–94 GHz, 1980 International Reliability Physics Symposium, April 8–10, Las Vegas, Nevada (1980).Google Scholar
  100. 100.
    Y. Anand, A. Christou, S. Ellis, L. Mang, and D. Bensen, 95 GHz High burnout GaAs Schottky barrier diodes, GOMAC Conference November 2, 1982, Orlando, Florida (1982).Google Scholar
  101. 101.
    Y. Anand and C. Howell, A burnout criterion for Schottky barrier mixer diode, Proc. IEEE (Lett.) 56, 2098 (1968).Google Scholar
  102. 102.
    Y. Anand and C. Howell, The red real culprit in diode failure, Microwave August 1–3 (1970).Google Scholar
  103. 103.
    D. Rees, Wright-Patterson AFB Avionics Lab., private communications.Google Scholar
  104. 104.
    H. Cong, A.R. Kerr, and RJ. Mattauch, The low-noise 115 GHz receiver on the Columbia-Giss 4 ft. radio telescope, IEEE Trans. Microwave Theory Tech. 27, 245–248 (1979).ADSCrossRefGoogle Scholar
  105. 105.
    F.J. Solmon, C.D. Berglund, R.W. Chick, and B.J. Clifton, Ka-band communication system of the Lincoln experimental satellites Les-8 and Les-9, J. Space Craft Rockets 16, 181–186 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Y. Anand
    • 1
  1. 1.M/A-COM Gallium Arsenide Products, IncBurlingtonUSA

Personalised recommendations