In general, the detectors used for detecting electromagnetic radiation fall into one of two categories: (1) classical or thermal detectors and (2) quantum or photon detectors.


Barrier Height Schottky Barrier Schottky Diode Auger Recombination Noise Equivalent Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.H. Putley, in Semiconductors and Semimetals (R.K. Willardson and A.C. Beer, eds.), Vol. 5, pp. 259–285, Academic Press, New York (1970).Google Scholar
  2. 2.
    E.H. Putley, in Topics in Applied Physics, Optical and Infrared Detectors (R.J. Keyes, ed.), Vol. 19, pp. 71–100, Springer-Verlag, Berlin, (1980).Google Scholar
  3. 3.
    P.W. Kruse, in Topics in Applied Physics, Optical and Infrared Detectors (R.J. Keyes, ed.), Vol. 19, pp. 5–69, Springer-Verlag, Berlin (1980).Google Scholar
  4. 4.
    S.M. Ryvkin, Photoelectric Effects in Semiconductors, Consultants Bureau, New York (1964).Google Scholar
  5. 5.
    R.P. Riesz, High-speed semiconductor photodiodes, Rev. Sci Instrum. 33, 994–998 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    C.A. Burrus and W.M. Sharpless, Planar p-n-junction germanium photodiodes for use at microwave modulation frequencies, Solid-State Electron. 13, 1283–1287 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    D.H. Seib and L.K. Aukerman, in Advances in Electronics and Electron Physics (L. Marton, ed.), Vol. 34, pp. 95–221, Academic Press, New York (1973).Google Scholar
  8. 8.
    D.K. Hohnke and H. Holloway, Epitaxial PbSe Schottky-barrier diodes for infrared detection, Appl. Phys. Lett. 24, 633–635 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    D.K. Honke, H. Holloway, K.F. Yeung, and M. Hurley, Thin-film (Pb, Sn)Se photodiodes for 8–12 μm operation, Appl. Phys. Lett. 29, 98–100 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    S.G. Parker, Expitaxial deposition of Pb xSn1-xTe on Pb xSn1-xTe substrates in a closed system, J. Electrochm. Soc. 123, 920–924 (1976).CrossRefGoogle Scholar
  11. 11.
    T.K. Chu, A.C. Bouley, and G.M. Black, Preparation of epitaxial thin film lead salt infrared detectors, Proc. SPIE—Int. Soc. Opt. Eng. 285 (Infrared Detect. Mater.) (1981), p. 33.Google Scholar
  12. 12.
    M. Drinkwine, J. Rozenbergs, S. Jost, and A. Amith, The lead/lead sulfide selenide PbS0.5Se0.5 interface and performance of lead/lead sulfide selenide (PbS0.5Se0.5) photodiodes, Proc. SPIE—Int. Soc. Opt. Eng. 285 (Infrared Detect. Mater.) (1981), p. 36.Google Scholar
  13. 13.
    J. Baars, D. Basset, and M. Schulz, Metal-semiconductor barrier studies of PbTe, Phys. Status Solidi(a) 49, 483–488 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    E.Y. Chan and H.C. Card, Infrared optoelectronic properties of metal-germanium Schottky barriers, IEEE Trans. Electron. Devices ED-27, 78–83 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    R. B. Schoolar, J. D. Jensen, G. M. Black, S. Foti, and A. C. Bouley, Multispectral Pb xSn1-x and Pb y Sn1-ySe photovoltaic infrared detectors, Infrared Phys. 20, 271–275 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    D.L. Polla and A.K. Sood, Schottky barrier photodiodes in pHg1-xCd x Te, J. Appl. Phys. 51, 4908–4912 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Nagao, T. Hariu, and Y. Shibata, GaSb Schottky diodes for infrared detectors, IEEE Trans. Electron Devices ED-28, 407–411 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    S.C. Gupta, B.L. Sharma, and V.V. Agashe, Comparison of Schottky barrier and diffused junction infrared detectors, Infrared Phys. 19, 545–548 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    M.V. Schneider, Schottky barrier photodiodes with antireflection coating, Bell System Tech. J. 45, 1611–1638 (1966).Google Scholar
  20. 20.
    W.M. Sharpless, Evaluation of a specially designed GaAs Schottky barrier photodiode using 6328 Å radiation modulated at 4 GHz, Appl. Opt. 9, 489–494 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    F.D. Shepherd, Recent advances in Schottky IR-photodiodes and projected camera capabilities, International electron device meeting, Washington D.C., 7 December 1981.Google Scholar
  22. 22.
    W. Shockley and W.T. Read, Statistics of the recombination of holes and electrons, Phys. Rev. 87, 835–842 (1952).ADSMATHCrossRefGoogle Scholar
  23. 23.
    A.G. Milnes, Semiconductor Devices and Integrated Electronics, Van Nostrand Reinhold Company, New York (1980).Google Scholar
  24. 24.
    J.S. Blakemore, Semiconductor Statistics, Pergamon Press, Oxford (1962).MATHGoogle Scholar
  25. 25.
    W. van Roosbroeck and W. Shockley, Photon radiative recombination of electrons and holes in germanium, Phys. Rev. 94, 1558–1560 (1954).ADSCrossRefGoogle Scholar
  26. 26.
    A.R. Beattie and P.T. Landesberg, Auger effect in semiconductors, Proc. R. Soc. London Ser. A 249, 16–29 (1959).ADSCrossRefGoogle Scholar
  27. 27.
    A.R. Beattie and P.T. Landesberg, One-dimensional overlap functions and their application to Auger recombination in semiconductors, Proc. R. Soc. London Ser. A 258, 486–495 (1960).ADSCrossRefGoogle Scholar
  28. 28.
    H. Preier, Comparison of the junction resistance of (PbSn)Te and (PbSn)Se infrared detector diodes, Infrared Phys. 18, 43–46 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York (1969).Google Scholar
  30. 30.
    S.C. Gupta, B.L. Sharma, and V.V. Agashe, Nomographs for evaluating parameters of Schottky barrier IR-detectors, Infrared Phys. 19, 673–675 (1979).ADSCrossRefGoogle Scholar
  31. 31.
    J. Bardeen, Surface states and rectification at a metal semiconductor contact, Phys. Rev. 71, 717–727 (1947).ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Cowley and S.M. Sze, Surface States and barrier height of metal-semiconductor systems, J. Appl. Phys. 96, 3212–3220 (1965).ADSCrossRefGoogle Scholar
  33. 33.
    V. Heine, Theory of surface states, Phys. Rev. A 138, 1689–1696 (1965).ADSGoogle Scholar
  34. 34.
    S.G. Louie, J R. Chelikowsky, and M.L. Cohen, Ionicity and the theory of Schottky barriers, Phys. Rev. B 15, 2154–2162 (1977).ADSCrossRefGoogle Scholar
  35. 35.
    L.J. Brillson, Transition in Schottky barrier formation with chemical reactivity, Phys. Rev. Lett. 40, 260–263 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    K. Zdansky and Z. Sroubek, in Physics of Semiconductors (B.L.H. Wilson, ed.), Conference Series No. 43, pp. 761–764, Institute of Physics, London (1979).Google Scholar
  37. 37.
    R.H. Williams, V. Montgomery, and R.R. Varma, Chemical effects in Schottky barrier formation, J. Phys. C: Solid State Phys. 11, L735-L738 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    M. Schlüter, Chemical trends in metal-semiconductor barrier heights, Phys. Rev. B 17, 5044–5047 (1978).ADSCrossRefGoogle Scholar
  39. 39.
    V.S. Fomenko, Handbook of Thermionic Properties, Plenum Press, New York (1966).Google Scholar
  40. 40.
    E.H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).Google Scholar
  41. 41.
    H.B. Michaelson, Relation between an atomic electro negativity scale and the work function, IBM J. Res. Devp. 22, 72–80 (1978).CrossRefGoogle Scholar
  42. 42.
    H.B. Michaelson,spi Work Function of the Elements, Handbook of Chemistry and Physics (R.C. Weast, ed.), 58th ed. CRC Press, Cleveland, Ohio, pp. E81-E82 (1977–1978).Google Scholar
  43. 43.
    R.Z. Bachrach and A. Bianconi, Interface states at the Ga-GaAs interface, J. Vac. Sci. Technol. 15, 525–528 (1978).ADSCrossRefGoogle Scholar
  44. 44.
    L.J. Brillson, Chemical reaction and charge redistribution at metal-semiconductor interfaces, J. Vac. Sci. Technol. 15, 1378–1383 (1978).ADSCrossRefGoogle Scholar
  45. 45.
    I. Lindau, P.W. Chye, C.M. Garner, P. Pianetta, C.Y. Su, and W.C. Spicer, New phenomena in Schottky barrier formation on III-V compounds, J. Vac. Sci Technol. 15, 1332–1339 (1978).ADSCrossRefGoogle Scholar
  46. 46.
    L.J. Brillson, Chemical reactions and local charge redistribution at metal-CdS and CdSe interfaces, Phys. Rev. B 18, 2431–2446 (1978).ADSCrossRefGoogle Scholar
  47. 47.
    V.L. Rideout, Review of the theory, technology and application of metal-semiconductor rectifiers, Thin Solid Films 48, 261–291 (1978).ADSCrossRefGoogle Scholar
  48. 48.
    F. Lukes, Oxidation of Si and GaAs in air at room temperature, Surf. Sci. 30, 91–100 (1972).ADSCrossRefGoogle Scholar
  49. 49.
    A.C. Adams and B.R. Pruniax, Gallium arsenide surface film evaluation by ellipsometry and its effect on Schottky barriers, J. Electrochem. Soc. 120, 408–414 (1973).CrossRefGoogle Scholar
  50. 50.
    R.B. Schoolar and J.D. Jensen, Narrowband detection at long wavelengths with epitaxial Pb ySn1-ySe films, Appl. Phys. Lett. 31, 536–538 (1977).ADSCrossRefGoogle Scholar
  51. 51.
    R.B. Schoolar, J.D. Jensen, and G.M. Black, Composition-turned PbS x Se1-x, Schottkybarrier infrared detectors, Appl. Phys. Lett. 31, 620–622 (1977).ADSCrossRefGoogle Scholar
  52. 52.
    R. Longshore, M. Jasper, B. Summer, and P. LoVecehio, Evaluation of Pb0.8Sn0.2Te detector fabrication using surface analysis, Infrared Phys. 15, 311–315 (1975).ADSCrossRefGoogle Scholar
  53. 53.
    H.C. Card, E.S. Yang, and P. Panayotatos, Peaked Schottky-barrier solar cells by Al-Si metallurigical reactions, Appl. Phys. Lett. 30, 643–645 (1977).ADSCrossRefGoogle Scholar
  54. 54.
    J. Basterfield, J.M. Shannon, and A. Gill, The nature of barrier height variations in alloyed Al-Si Schottky barrier diodes, Solid State Electron. 18, 290–291 (1975).ADSCrossRefGoogle Scholar
  55. 55.
    S. Buchner, T.S. Sun, W.A. Beck, N.E. Byer, and J.M. Chen, Schottky barrier formation on (Pb, Sn)Te, J. Vac. Sci. Technol. 16, 1171–1173 (1979).ADSCrossRefGoogle Scholar
  56. 56.
    B.L. Sharma and S.C. Gupta, Metal-semiconductor Schottky barrier junctions, Part 1-Fabrication, Solid State Technol. 23, 97–101 (May 1980).CrossRefGoogle Scholar
  57. 57.
    J.D. Jensen and R.B. Schoolar, Surface charge transport in PbS x Se1-x and PbS1-ySny Se epitaxial films, J. Voc. Sci. Technol. 13, 920–925 (1976).ADSCrossRefGoogle Scholar
  58. 58.
    M. Bleicher, H.D. Wurzinger, H. Maier, and H. Preier, n-type PbS and PbS1-xSnxlayers prepared by the hot-wall epitaxy, J. Mater. Sci. 12, 317–322 (1977).ADSCrossRefGoogle Scholar
  59. 59.
    D. Tsang and S.E. Schwarz, Detection of 10 km radiation with point-contact Schottky diodes, Appl. Phys. Lett. 30, 263–265 (1977).ADSCrossRefGoogle Scholar
  60. 60.
    R.D. Baertsch and J.R. Richardson, An Ag-GaAs Schottky-barrier ultraviolet detector, J. Appl. Phys. 40, 229–236 (1969).ADSCrossRefGoogle Scholar
  61. 61.
    G.E. Stillman. C.M. Wolfe, A.G. Foyt, and W.T. Lindley, Schottky barrier lnx Ga1-xAs alloy avalanche photodiodes for 1.06 μm, Appl. Phys. Lett. 24, 8–10 (1974).ADSCrossRefGoogle Scholar
  62. 62.
    J.R. Richardson and R.D. Baertsch, Zinc sulfide Schottky barrier ultra-violet detectors, Solid State Electron. 12, 393–397 (1969).ADSCrossRefGoogle Scholar
  63. 63.
    E.M. Logothetis, H. Holloway, A.J. Varga, and E. Wilkes, Infrared detection by Schottky barriers in epitaxial PbTe, Appl. Phys. Lett. 19, 318–320 (1971).ADSCrossRefGoogle Scholar
  64. 64.
    R.A. Chapman, M.R. Johnson, and H.B. Morris, Metal-semiconductor diode infrared detector having semi-transparent electrode, U.S. Patent 3, 980, 915 (September 14, 1976).Google Scholar
  65. 65.
    B.L. Sharma and S.C. Gupta, Metal-semiconductor Schottky barrier junctions: Part II— Characterization and applications, Solid State Technol. 23, 90–95 (June 1980).CrossRefGoogle Scholar
  66. 66.
    M. Lanir, A.H.B. Vanderwyck, and C.C. Wang, EBIC characterization of HgCdTe crystals and photodiodes, J. Electron. Mat. 8, 175–189 (1979).ADSCrossRefGoogle Scholar
  67. 67.
    R.W. Grant, J.G. Pasko, J.T. Longo, and A.M. Andrews, ESCA surface studies of Pb1-xTe devices, J. Vac. Sci Technol. 13, 940–947 (1976).ADSCrossRefGoogle Scholar
  68. 68.
    A. Christon and K. Sleger, in GaAs and Related Compunds, St. Louis 1976 (L.F. Eastman, ed.), Conference Series No. 33b, pp. 191–200, Institute of Physics, London (1977).Google Scholar
  69. 69.
    J.J. Lander, H. Schreiber, Jr., T.M. Buch, and J.B. Mathews, Microscopy of internal crystal imperfections in Si p-n junction diodes by use of electron beam, Appl. Phys. Lett. 3, 206–207 (1963).ADSCrossRefGoogle Scholar
  70. 70.
    W. Czaja, Response of Si and GaP p-n junctions to a 5- to 40-keV electron beam, J. Appl. Phys. 37, 4236–4248 (1966).ADSCrossRefGoogle Scholar
  71. 71.
    T.E. Everhart, O.C. Wells, and R.K. Matta, A novel method of semiconductor device measurements, Proc. IEEE 52, 1642–1647 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • S. C. Gupta
    • 1
  • H. Preier
    • 1
  1. 1.Fraunhofer-Institut für Physikalische MesstechnikFreiburgFederal Republic of Germany

Personalised recommendations