A rectifying metal-semiconductor contact is known as a Schottky barrier after W. Schottky, who first proposed a model for barrier formation. Our knowledge of metal-semiconductor diodes is more than a century old. F. Braun,(1) in 1874, reported the rectifying nature of metallic contacts on copper, iron, and lead sulfide crystals. Although numerous experimental and theoretical studies have been carried out since then, our understanding of the metalsemiconductor junctions is still far from complete. This is perhaps due to the fact that their performance is highly process dependent.


Barrier Height Schottky Barrier Reverse Bias Depletion Region Deep Level Transient Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Braun, Über die Stromleitung durch Schwefelmetalle, Ann. Phys. Chem. 153, 556 (1874).Google Scholar
  2. 2.
    H.C. Torrey and C.A. Whitmer, Crystal Rectifiers, McGraw-Hill, New York (1948).Google Scholar
  3. 3.
    W. Schottky, R. Strömer, and F. Waibel, Hochfrequenztechnik 37, 162–165 (1931).Google Scholar
  4. 4.
    W. Schottky, Naturwissenschaften 26, 843 (1938).ADSCrossRefGoogle Scholar
  5. 5.
    N.F. Mott, Note on the contact between a metal and an insulator or semiconductor, Proc. Comb. Phil Soc. 34, 568–572 (1938).ADSCrossRefGoogle Scholar
  6. 6.
    H.A. Bethe, Theory of the boundary layer of crystal rectifiers, MIT Radiation Laboratory, Report 43–12 (1942).Google Scholar
  7. 7.
    H.K. Henisch, Rectifying Semiconductor Contacts, Clarendon Press, Oxford (1957).MATHGoogle Scholar
  8. 8.
    A.G. Milnes and D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Chap. 6 and 7), Academic Press New York (1972).Google Scholar
  9. 9.
    E.H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).Google Scholar
  10. 10.
    E.H. Rhoderick, Metal-semiconductor contacts, IEEE Proc. 129(1), 1–14(1982).Google Scholar
  11. 11.
    V.L. Rideout, A review of the theory, technology and applications of metal-semiconductor rectifiers, Thin Solid Films 48, 261–291 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    B.L. Sharma and S.C. Gupta, Metal-semiconductor Schottky barrier junctions and their applications, Solid State Technol. 23(5), 97 (1980);Google Scholar
  13. 12a.
    B.L. Sharma and S.C. Gupta, Metal-semiconductor Schottky barrier junctions and their applications, Solid State Technol. 23(6), 90 (1980).Google Scholar
  14. 13.
    J. Bardeen, Surface states and rectification at a metal-semiconductor contact, Phys. Rev. 71, 717–727 (1947).ADSCrossRefGoogle Scholar
  15. 14.
    C.A. Mead, Metal-semiconductor surface barriers, Solid-State Electron. 9, 1023–1032 (1966).ADSCrossRefGoogle Scholar
  16. 15.
    M. Aven and C.A. Mead, Electrical transport and contact properties of low-resitivity n-type zinc sulphide crystals, Appl. Phys. Lett. 7, 8–10 (1965).ADSCrossRefGoogle Scholar
  17. 16.
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1960).Google Scholar
  18. 17.
    S. Kurtin, T.C. McGill, and C.A. Mead, Fundamental transition in electronic nature of solids, Phys. Rev. Lett. 22, 1433–1436 (1969).ADSCrossRefGoogle Scholar
  19. 18.
    J.M. Andrews and J.C. Phillips, Chemical bonding and structure of metal-semiconductor interfaces, Phys. Rev. Lett. 35, 56–59 (1975).ADSCrossRefGoogle Scholar
  20. 19.
    G. Ottaviani, K.N. Tu, and J.W. Mayer, Interfacial reaction and Schottky barrier in metal-silicon systems, Phys. Rev. Lett. 44, 284–287 (1980).ADSCrossRefGoogle Scholar
  21. 20.
    P.S. Ho, P.E. Schmid, and H. Foll, Stoichiometric and structural origin of electronic states at the Pd2 Si-Si interfaces, Phys. Rev. Lett. 46, 782–785 (1981).ADSCrossRefGoogle Scholar
  22. 21.
    J.L. Freeouf, G.W. Rubloff, P.S. Ho, and T.S. Kuan, Reactive Schottky-barrier formation: The Pd-Si interfaces, J. Vac. Sci Technol. 17, 916–925 (1980).ADSCrossRefGoogle Scholar
  23. 22.
    L.J. Brillson, Transition in Schottky barrier formation with chemical reactivity, Phys. Rev. Lett. 40, 260–263 (1978).ADSCrossRefGoogle Scholar
  24. 23.
    D.C. Northrop and E.H. Rhoderick, The physics of Schottky barriers, in Variable Impedance Devices (M.J. Howes and D.V. Morgan, ed.), Chap. 2, pp. 37–73, John Wiley and Sons, New York (1978).Google Scholar
  25. 24.
    A.M. Cowley and S.M. Sze, Surface states and barrier height of metal-semiconductor systems, J. Appl. Phys. 36, 3212–3220 (1965).ADSCrossRefGoogle Scholar
  26. 25.
    O. Wada, A. Majerfeld, and P.N. Robson, P Schottky contacts with increased barrier height, Solid-State Electron. 25, 381–387 (1982).ADSCrossRefGoogle Scholar
  27. 26.
    A.N. Daw, A.K. Dutta, and M.C. Ash, On the determination of the neutral level and charge density in the interfacial layer of a MIS diode, Solid-State Electron. 25, 431–432 (1982).ADSCrossRefGoogle Scholar
  28. 27.
    S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York (1981).Google Scholar
  29. 28.
    V. Heine, Theory of surface states, Phys. Rev. A 138, 1689–1696 (1965).ADSGoogle Scholar
  30. 29.
    W. Schockley, On the surface states associated with a periodic potential, Phys. Rev. 56, 317–323 (1939).ADSCrossRefGoogle Scholar
  31. 30.
    A.J. Bennet and C.B. Duke, Self-consistent model of bimetallic interfaces I. Dipole effects, Phys. Rev. B 160, 541–553 (1967);ADSCrossRefGoogle Scholar
  32. 30a.
    A.J. Bennet and C.B. Duke, Metallic interfaces II., Influence of the exchange correlation and lattice potentials, Phys. Rev. B 162, 578–590 (1967).ADSCrossRefGoogle Scholar
  33. 31.
    B. Pellegrini, A detailed analysis of the metal-semiconductor contact, Solid-State Electron. 17, 217–237 (1974).ADSCrossRefGoogle Scholar
  34. 32.
    J.C. Inkson, Many-body effects at metal-semiconductor junctions II; The self-energy and band structure distortion, J. Phys. C: Solid-State Phys. 6, 1350–1362 (1973).ADSCrossRefGoogle Scholar
  35. 33.
    J.C. Phillips, J. Vac. Sci. Technol. 11, 947 (1974).ADSCrossRefGoogle Scholar
  36. 34.
    W.A. Harrison, Schottky barriers without mid-gap states, Phys. Rev. Lett. 37, 312–313 (1976).ADSCrossRefGoogle Scholar
  37. 35.
    S.G. Louie and M.L. Cohen, Electronic structure of a metal semiconductor interface, Phys. Rev. B 13, 2461–2469 (1976).ADSCrossRefGoogle Scholar
  38. 36.
    S.G. Louie, J.R. Chelikowsky, and M.L. Cohen, Theory of semiconductor surface states and metal-semiconductor interfaces, J. Vac. Sci. Technol. 13, 790–797 (1976).ADSCrossRefGoogle Scholar
  39. 37.
    J.E. Rowe, S.B. Christman, and G. Margaritondo, Metal-induced surface states during Schottky-barrier formation on Si, Ge and GaAs, Phys. Rev. Lett. 35, 1471–1474 (1975).ADSCrossRefGoogle Scholar
  40. 38.
    W.E. Spicer, P.W. Chye, P. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. Technol. 15, 1422 (1979).CrossRefGoogle Scholar
  41. 39.
    L.J. Brillson, R.Z. Bachrach, R.S. Bauer, and J. McEnamin, Chemically-induced charge distribution at Al-GaAs interfaces, Phys. Rev. Lett. 42, 397–401 (1979).ADSCrossRefGoogle Scholar
  42. 40.
    J. Van Laar and A. Huijser, Contact potential differences for III–V compound surfaces, J. Vac. Sci. Technol. 13, 769–772 (1976).CrossRefGoogle Scholar
  43. 41.
    P.W. Chye, T. Sikegawa, I.A. Babalola, H. Sunami, P.E. Gregory, and W.E. Spicer, Surface and interface states of GaSb: A photo-emission study, Phys. Rev. B 15, 2118–2126 (1977).ADSCrossRefGoogle Scholar
  44. 42.
    W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, and P. Chye, Unified mechanism for Schottkybarrier formation and III–V oxide interface states, Phys. Rev. Lett. 44, 420–423 (1980).ADSCrossRefGoogle Scholar
  45. 43.
    W.E. Spicer, J. Vac. Sci. Technol 17, 1019 (1980).ADSCrossRefGoogle Scholar
  46. 44.
    W. Mönch and H. Gant, Chemisorption-induced defects on GaAs (110) surfaces, Phys. Rev. Lett. 48, 512–515(1982).ADSCrossRefGoogle Scholar
  47. 45.
    A. Hiracki, A model for the mechanism of room temperature interfacial intermixing reactions in various metal-semiconductor couples, J. Electrochem. Soc. 127, 2662–2665 (1980).CrossRefGoogle Scholar
  48. 46.
    L.J. Brillson, R.S. Bauer, R.Z. Bachrach, and G. Hansson, Atomic interdiffusion at Au-AlGaAs interfaces, Appl. Phys. Lett. 36, 326–328 (1980).ADSCrossRefGoogle Scholar
  49. 47.
    J.M. Palau, E. Testemale, A. Ismail, and L. Lessabatere, Silver Schottky-diodes on Kelvin, AES and LED characterized (100) surfaces of GaAs cleaned by ion bombardment, Solid-State Electron. 25, 285–294 (1982).ADSCrossRefGoogle Scholar
  50. 48.
    A.M. Goodman, Metal-semiconductor barrier height measurement by differential capacitance method—One carrier system, J. Appl. Phys. 34, 329–338 (1963).ADSCrossRefGoogle Scholar
  51. 49.
    R.H. Fowler, The analysis of photoelectric sensitivity curves for clean metals at various temperatures, Phys. Rev. 38, 45–56 (1931).ADSMATHCrossRefGoogle Scholar
  52. 50.
    R. Hackam and P. Harrop, Temperature dependence of the Schottky barrier height in gallium arsenide, Solid State Commun. 11, 669–672 (1972).ADSCrossRefGoogle Scholar
  53. 51.
    M.S. Tyagi, Electrical properties of metal-GaAs Schottky barriers, Surf. Sci. 64, 323–333 (1977).ADSCrossRefGoogle Scholar
  54. 52.
    A.M. Cowley, Depletion capacitance and diffusion potential of GaP Schottky barrier diodes, J. Appl. Phys. 37, 3024–3032 (1966).ADSCrossRefGoogle Scholar
  55. 53.
    R. Mach, H. Treptow, and W. Ludwig, Physical properties of Au-ZnSe metal-semiconductor contacts, Phys. Status Solidi (a) 25, 567–573 (1974).ADSCrossRefGoogle Scholar
  56. 54.
    M.S. Tyagi and S.N. Arora, Metal-ZnSe Schottky barriers, Phys. Status Solidi (a) 32, 165–172 (1975).ADSCrossRefGoogle Scholar
  57. 55.
    M.J. Turner and E.H. Rhoderick, Metal-silicon Schottky barriers, Solid State Electron. 11, 291–309 (1968).ADSCrossRefGoogle Scholar
  58. 56.
    A. Thanailakis, Contacts between simple metals and atomically clean silicon, J. Phys. C: Solid State Phys. 8, 655–668 (1975).ADSCrossRefGoogle Scholar
  59. 57.
    A. Thanailakis and A. Rasul, Transition-metal contacts to atomically clean silicon, J. Phys. C: Solid State Phys. 9, 337–343 (1976).ADSCrossRefGoogle Scholar
  60. 58.
    W.G. Spitzer and C.A. Mead, Barrier height studies on metal semiconductor systems, J. Appl. Phys. 34, 3061–3069 (1963).ADSCrossRefGoogle Scholar
  61. 59.
    R.K. Swank, M. Aven, and J.Z. Devine, Barrier heights and contact properties of w-type ZnSe crystals, J. Appl. Phys. 40, 89–97 (1969).ADSCrossRefGoogle Scholar
  62. 60.
    L.J. Brillson, G. Margaritondo, and N.G. Stoffel, Atomic modulation of interdiffusion at Au-GaAs interfaces, Phys. Rev. Lett. 44, 667–670 (1980).ADSCrossRefGoogle Scholar
  63. 61.
    J.D. McCaldin, T.C. McGill, and C.A. Mead, Correlation for III-V and II-VI semiconductors of the Au Schottky barrier energy with anion electronegativity, Phys. Rev. Lett. 36, 56–61 (1976).ADSCrossRefGoogle Scholar
  64. 62.
    M.L. Cohen, Electrons at interfaces, in Advances in Electronics and Electron Physics (L. Marton and C. Marton, Eds.), Vol. 51, pp. 1–62, Academic Press, New York (1980).Google Scholar
  65. 63.
    M. Schlüter, Chemical trends in metal-semiconductor barrier heights, Phys. Rev. B 17, 5044–5047 (1978).ADSCrossRefGoogle Scholar
  66. 64.
    J. Hilibrand and R.D. Gold, Determination of impurity distribution in junction diode from capacitance voltage measurements, RCA Rev. 21, 245–252 (1960).Google Scholar
  67. 65.
    P.J. Baxandall, D.J. Colliver, and A.F. Fray, An instrument for the rapid determination of semiconductor impurity profiles, J. Phys. E: Sci. Inst. 4, 213–221 (1971).ADSCrossRefGoogle Scholar
  68. 66.
    D.P. Kennedy, P.C. Murley, and W. Kleinfelder, On the measurement of impurity atom distributions in silicon by the differential capacitance technique, IBM J. Res. Dev. 12, 399–409 (1968).CrossRefGoogle Scholar
  69. 67.
    M. Nishida, Depletion approximation analysis of the differential capacitance-voltage characteristics of an MOS structure with nonuniformly opened semiconductors, IEEE Trans. Electron Devices ED-26, 1081–1085 (1979).MathSciNetADSCrossRefGoogle Scholar
  70. 68.
    M.A. Green, The capacitance of large barrier Schottky diodes, Solid-State Electron. 19, 421–422 (1976).ADSCrossRefGoogle Scholar
  71. 69.
    L.C. Kimerling, Influence of deep traps on the measurement of free-carrier distributions in semiconductors by junction capacitance techniques, J. Appl. Phys. 45, 1839–1845 (1974).ADSCrossRefGoogle Scholar
  72. 70.
    D.V. Lang, Deep level transient spectroscopy: A new method to characterize traps in semiconductor, J. Appl. Phys. 45, 3023–3032 (1974).ADSCrossRefGoogle Scholar
  73. 71.
    G.L. Miller, D.V. Lang, and L.C. Kimerling, Capacitance transient spectroscopy, Ann. Rev. Mater. Sci. 377–448 (1977).Google Scholar
  74. 72.
    C. Wagner, Theory of current rectifiers, Phys. Z. 32, 641–645 (1931).Google Scholar
  75. 73.
    W. Schottky and E. Spenke, Quantitative treatment of the space charge and boundary-layer theory of the crystal rectifier, Wiss. Veroff. Siemens—Werken 18, 225–291 (1939).Google Scholar
  76. 74.
    C.R. Crowell and S.M. Sze, Current transport in metal-semiconductor barriers, Solid-State Electron. 9, 1035–1048 (1966).ADSCrossRefGoogle Scholar
  77. 75.
    J.M. Wilkinson, J.D. Wilcock, and M.E. Brinson, Theory and experiment for silicon Schottkybarrier diode at high-current density, Solid-State Electron. 20, 45–50 (1977).ADSCrossRefGoogle Scholar
  78. 76.
    G. Baccarani, Current transport in Schottky barrier diodes, J. Appl. Phys. 47, 4122–4126 (1976).ADSCrossRefGoogle Scholar
  79. 77.
    F.A. Padovani and R. Stratton, Field and thermionic-field emission in Schottky barriers, Solid-State Electron. 9, 695–707 (1966).ADSCrossRefGoogle Scholar
  80. 78.
    C.R. Crowell and V.L. Rideout, Normalized thermionic-field emission in metalsemiconductor barriers, Solid-State Electron. 12, 89–105 (1969).ADSCrossRefGoogle Scholar
  81. 79.
    F.A. Padovani, The voltage-current characteristic of metal-semiconductor contacts, in Semiconductors and Semimetals, Academic Press, New York, Vol. 7, pp. 75–146 (1971).Google Scholar
  82. 80.
    V.L. Rideout and C.R. Crowell, Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts, Solid-State Electron. 13, 993–1009 (1970).ADSCrossRefGoogle Scholar
  83. 81.
    C.Y. Chang and S.M. Sze, Carrier transport across metal-semiconductor barriers, Solid-State Electron. 13, 727–740 (1970).ADSCrossRefGoogle Scholar
  84. 82.
    A.S. Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons, New York (1967).Google Scholar
  85. 83.
    A.Y.C. Yu and E.H. Snow, Surface effects on metal-silicon contacts, J. Appl. Phys. 39, 3008–3016 (1968).ADSCrossRefGoogle Scholar
  86. 84.
    A.Y.C. Yu and E.H. Snow, Minority carrier injection of metal-silicon contacts, Solid-State Electron. 12, 155–160(1969).ADSCrossRefGoogle Scholar
  87. 85.
    D.A. Buchanan and H.C. Card, On the dark current in germanium Schottky-barrier photodetectors, IEEE Trans. Electron Devices ED-29, 154–157 (1982).CrossRefGoogle Scholar
  88. 86.
    D.L. Scharfetter, Minority carrier injection and charge storage in epitaxial Schottky barrier diodes, Solid-State Electron. 8, 299–311 (1965).ADSCrossRefGoogle Scholar
  89. 87.
    A.N. Saxena, Forward current-voltage characteristics of Schottky barriers on n-type silicon, Sur. Sci. 13, 151–171 (1969).ADSCrossRefGoogle Scholar
  90. 88.
    G.S. Visweswaran and R. Sharan, Current transport in large area Schottky diodes, Proc. IEEE 67, 436–437 (1979).CrossRefGoogle Scholar
  91. 89.
    J.D. Levine, Schottky barrier anomalies and interface states, J. Appl. Phys. 42, 3991–3999 (1971).ADSCrossRefGoogle Scholar
  92. 90.
    C.R. Crowell, The physical significance of the T 0 anomalies in Schottky barriers, Solid-State Electron. 20, 171–175 (1977).ADSCrossRefGoogle Scholar
  93. 91.
    E.H. Rhoderick, A note on Levine’s model of Schottky barriers, J. Appl. Phys. 46, 2809 (1975).ADSCrossRefGoogle Scholar
  94. 92.
    J.D. Levine, Power Law reverse current-voltage characteristic in Schottky barriers, Solid-State Electron. 17, 1083–1086 (1974).ADSCrossRefGoogle Scholar
  95. 93.
    M. Hirose, N. Altaf, and T. Arizumi, Contact properties of metal-silicon Schottky barriers, Jpn. J. Appl. Phys. 9, 260–264 (1970).ADSCrossRefGoogle Scholar
  96. 94.
    J.M. Andrews and M.P. Lepselter, Reverse current-voltage characteristics of metal-silicide Schottky diodes, Solid-State Electron. 13, 1011–1023 (1970).ADSCrossRefGoogle Scholar
  97. 95.
    M.P. Lepselter and S.M. Sze, Silicon Schottky barrier diode with near-ideal I-V characteristics, Bell Syst. Tech. J. 47, 195–208 (1968).Google Scholar
  98. 96.
    V.L. Rideout, A review of the theory and technology for ohmic contacts to group III-V compound semiconductors, Solid-State Electron. 18, 541–550 (1975).ADSCrossRefGoogle Scholar
  99. 97.
    M.P. Shaw, Metal-Semiconductor junctions, in Handbook on Semiconductors, Vol. 4, Chap. 1, pp. 50–85, North-Holland Publishing Company, Amsterdam (1981).Google Scholar
  100. 98.
    E. Testemale, J.M. Palau, A. Ismail, and L. Lassabatere, Properties of the contact on ion-cleaned n-and p-type silicon surfaces, Solid-State Electron. 26, 325–331 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. S. Tyagi
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations