The Evolution of Clonal Diversity in Poeciliopsis

  • Robert C. Vrijenhoek
Part of the Monographs in Evolutionary Biology book series (MEBI)


Despite the elegant body of theoretical literature on sexuality, recently reviewed by Williams (1975) and Maynard Smith (1978), very little empirical data exist to assess this “contest of ideas.” I will not attempt in this chapter to address the question, “Why is there sex?” Instead, I will examine a common assumption in most of these theoretical studies—that asexual populations lack genetic variation. It is commonly argued that asexual reproduction is an evolutionary dead end, that the absence of recombinational variability results in genetic inflexibility and sure extinction in a changing environment. The clonal genomes of asexual organisms are looked upon as rigid structures that can only change through mutation, and most mutations are deleterious (Muller, 1964). Despite the occasional success of some asexual populations, the long-term prospects appear grim (White, 1978). Yet, recent genetic studies have reported abundant clonal diversity in a number of asexually reproducing organisms [see reviews by Parker (1979a), Vepsalainen and Jarvinen (1979), and Vrijenhoek (1979a)]. What then is the source of this clonal diversity and how might it contribute to the ecological and evolutionary success of asexual populations?


Clonal Diversity Sexual Population Sexual Species Asexual Population Sexual Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angus, R. A., 1980, Geographical dispersal and clonal diversity in unisexual fish populations, Am. Nat. 115: 531–550.CrossRefGoogle Scholar
  2. Angus, R. A., and Schultz, R. J., 1979, Clonal diversity in the unisexual fish Poeciliopsis monacha-lucida: A tissue graft analysis, Evolution 33: 27–40.CrossRefGoogle Scholar
  3. Asher, J. H., Jr., and Nace, G. W., 1971, The genetic structure and evolutionary fate of parthenogenetic amphibian populations as determined by Markovian analysis, Am. Zool. 11: 381–398.Google Scholar
  4. Atchley, W. R., 1977, Evolutionary consequences of parthenogenesis: Evidence from the Warramaba virgo complex, Proc. Natl. Acad. Sci. USA 74: 130–1134.CrossRefGoogle Scholar
  5. Bachmann, K., 1972 Genome size in mammalsChromosoma 37 :85–93.PubMedCrossRefGoogle Scholar
  6. Bulger, A. J., and Schultz, R. J., 1979, Heterosis and interclonal variation in thermal tolerance in unisexual fish, Evolution 33: 848–859.CrossRefGoogle Scholar
  7. Bulger, A. J., and Schultz, R. J., 1982, Origins of thermal adaptation in northern vs. southern populations of a unisexual hybrid fish, Evolution 36: 1041–1050.CrossRefGoogle Scholar
  8. Cimino, M. C., 1972a, Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae), Science 175:1484–1486.PubMedCrossRefGoogle Scholar
  9. Cimino, M. C., 1972b, Egg production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis, Evolution 26:294–306.CrossRefGoogle Scholar
  10. Cimino, M. C., and Schultz, R. J., 1970, Production of a diploid male offspring by a gynogenetic triploid fish of the genus Poeciliopsis, Copeia 1970: 760–763.CrossRefGoogle Scholar
  11. Crow, J. F., and Kimura, M., 1965, Evolution in sexual and asexual populations, Am. Nat.99:439–450.CrossRefGoogle Scholar
  12. Crow, J. F., and Kimura, M., 1969, Evolution in sexual and asexual populations: A reply, Am. Nat. 103: 89–90.CrossRefGoogle Scholar
  13. Crow, J. F., and Temin, R. G., 1964, Evidence for the partial dominance of recessive lethal genes in Prosphilia, Am. Nat. 98: 21–33.CrossRefGoogle Scholar
  14. Eisenbrey, A. B., and Moore, W. S., 1981, Evolution of histocompatibility diversity in an asexual vertebrate, Poeciliopsis 2 monacha-lucida (Pisces: Poeciliidae), Evolution 35: 1180–1191.CrossRefGoogle Scholar
  15. Eshel, I., and Feldman, M., 1979, On the evolutionary effect of recombination, Theor. Popul. Biol. 1: 88–100.CrossRefGoogle Scholar
  16. Felsenstein, J., 1974, The evolutionary advantage of recombinations, Genetics 78: 737–756.PubMedGoogle Scholar
  17. Hutchinson, G. E., 1957, Concluding remarks, Cold Spring Harbor Symp. Quant. Biol. 22: 415–427.CrossRefGoogle Scholar
  18. Lerner, I. M., 1954, Genetic Homeostasis, Oliver and Boyd, Edinburgh.Google Scholar
  19. Leslie, J. F., 1982, Linkage analysis of seventeen loci in poeciliid fish (genus Poeciliopsis), J. Hered. 73: 19–23.PubMedGoogle Scholar
  20. Leslie, J. F., and Pontier, P. J., 1980, Linkage conservation of homologous esterase loci in fish (Cyprinodontoidei: Poeciliidae), Biochem. Genet. 18: 103–115.PubMedCrossRefGoogle Scholar
  21. Leslie, J. F., and Vrijenhoek, R. C., 1978, Genetic dissection of clonally inherited genomes of Poeciliopsis: I. Linkage analysis and preliminar assessment of deleterious gene loads, Genetics 90: 801–811.PubMedGoogle Scholar
  22. Leslie, J. F., and Vrijenhoek, R. C., 1980, Consideration of Muller’s ratchet mechanism through studies of genetic linkage and genomic compatibilities in clonally reproducing Poeciliopsis, Evolution 34: 1105–1115.CrossRefGoogle Scholar
  23. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  24. Lokki, J., 1976, Genetic polymorphism and evolution in parthenogenetic animals, VIII. Heterozygosity in relation to polyploidy, Hereditas 83: 65–72.PubMedCrossRefGoogle Scholar
  25. Maynard Smith, J., 1968, Evolution in sexual and asexual populations, Am. Nat. 102: 469–473.CrossRefGoogle Scholar
  26. Maynard Smith, J., 1971, The origin and maintenance of sex, in: Group Selection ( G. C. Williams, ed.), Aldine-Atherton, New York, pp. 163–176.Google Scholar
  27. Maynard Smith, J., 1978, The Evolution of Sex, Cambridge University Press, London.Google Scholar
  28. Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  29. McKay, F. E., 1971, Behavioral aspects of population dynamics in unisexual-bisexual Poeciliopsis (Pisces: Poeciliidae), Ecology 52: 778–790.CrossRefGoogle Scholar
  30. Miller, R. R., 1960, Four new species of viviparous fishes, genus Poeciliopsis, from northwestern Mexico, Occ. Pap. Mus. Zool. Univ. Mich. 433: 1–9.Google Scholar
  31. Moore, W. S., 1976, Components of fitness in the unisexual fish Poeciliopsis monachaoccidentalis, Evolution 30: 564–578.CrossRefGoogle Scholar
  32. Moore, W. S., 1977a, A histocompatibility analysis of inheritance in the unisexual fish Poeciliopsis 2 monacha-lucida, Copeia 1977: 213–223.CrossRefGoogle Scholar
  33. Moore, W. S., 1977b, An evaluation of narrow hybrid zones in vertebrates, Q. Rev. Biol. 52: 263–277.CrossRefGoogle Scholar
  34. Moore, W. S., and Eisenbrey, A. B., 1979, The population structure of an asexual vertebrate,Poeciliopsis 2 monacha-lucida (Pisces: Poeciliidae), Evolution 33:563–578.CrossRefGoogle Scholar
  35. Moore, W. S., and McKay, F. E., 1971, Coexistence in unisexual-bisexual complexes ofPoeciliopsis (Pisces: Poeciliidae), Ecology 52:791–799.CrossRefGoogle Scholar
  36. Mukai, T., Chigusa, S. T., Mettler, L. E., and Crow, J. F., 1972, Mutation rate and dominance of genes affecting viability in Drosophila melanogaster, Genetics 72: 335–355.PubMedGoogle Scholar
  37. Muller, H. J., 1950, Our load of mutations, Am. J. Hum. Genet. 2: 111–176.PubMedGoogle Scholar
  38. Muller, H. J., 1964. The relation of recombination to mutational advance, Mutat. Res. 1: 2–9.CrossRefGoogle Scholar
  39. Parker, E. D., Jr., 1979a, Ecological implications of clonal diversity in parthenogenetic morphospecies, Am. Zool. 19:753–762.Google Scholar
  40. Parker, E. D., Jr., 1979b, Phenotypic consequences of parthenogenesis in Cnemidophorus lizards: I. Variability in parthenogenetic and sexual populations, Evolution 33: 1150–1166.CrossRefGoogle Scholar
  41. Roughgarden, J., 1972, Evolution of niche width, Am. Nat. 106: 683–718.CrossRefGoogle Scholar
  42. Schultz, R. J., 1966, Hybridization experiments with an all-female fish of the genus Poeciliopsis, Biol. Bull. 130: 415–429.CrossRefGoogle Scholar
  43. Schultz, R. J., 1967, Gynogenesis and triploidy in the viviparous fish Poeciliopsis, Science 157: 1564–1567.Google Scholar
  44. Schultz, R. J., 1969, Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates, Am. Nat. 103: 605–619.CrossRefGoogle Scholar
  45. Schultz, R. J., 1971, Special adaptive problems associated unisexual fish, Am. Zool. 11: 351–360.Google Scholar
  46. Schultz, R. J., 1973, Unisexual fish: Laboratory synthesis of a “species,” Science 179: 180–181.PubMedCrossRefGoogle Scholar
  47. Schultz, R. J., 1977, Evolution and ecology of unisexual fishes, in: Evolutionary Biology, Vol. 10 ( M. K. Hecht, W. C. Steere, and B. Wallace, eds.), Plenum Press, New York, pp. 277–331.Google Scholar
  48. Schultz, R. J., 1982, Competition and adaptation among diploid and polyploid clones of unisexual fish, in: Evolution and Genetics of Life Histories (H. Dingle and J. P. Hegmann, eds.), Springer-Verlag, New York, pp. 103–119.CrossRefGoogle Scholar
  49. Schultz, R. J., and Kallman, K. D., 1968, Triploid hybrids between the all-female teleost Poecilia formosa and Poecilia sphenops, Nature 219: 280.CrossRefGoogle Scholar
  50. Sparrow, A. H., Price, J. H., and Underbrink, A. G., 1972, A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: Some evolutionary considerations, in: Evolution of Genetic Systems (H. H. Smith et al.,eds.), Brookhaven Symp. Biol. 23:451–495.Google Scholar
  51. Spinella, D. G., and Vrijenhoek, R. C., 1982, Genetic dissection of clonally inherited genomes of Poeciliopsis: II. Investigation of a silent carboxylesterase allele, Genetics. 100: 279–286.PubMedGoogle Scholar
  52. Stearns, S. C., 1977, The evolution of life history traits: A critique of the theory and a review of the data, Annu. Rev. Ecol. Syst. 8: 145–171.CrossRefGoogle Scholar
  53. Strickberger, M. W., 1976, Genetics, 2nd ed., Macmillan, New York.Google Scholar
  54. Templeton, A. R., 1979, The unit of selection in Drosophila mercatorum, II. Genetic revolution and the origin of coadapted genomes in parthenogenetic strains, Genetics 92: 1265–1282.PubMedGoogle Scholar
  55. Thibault, R. E., 1974, The ecology of unisexual and bisexual fishes of the genus Poeciliopsis: A study in niche relationships. Ph. D. dissertation, University of Connecticut, Storrs, Connecticut.Google Scholar
  56. Thompson J. N., Jr., and Woodruff, R. C., 1980, Increased mutation in crosses between geographiclly separated strains of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 77: 1056–1062.Google Scholar
  57. Van Valen, L., 1962, A study of fluctuating asymmetry, Evolution 16: 125–142.CrossRefGoogle Scholar
  58. Vepsalainen, K., and Jarvinen, O., 1979, Apomictic parthenogenesis and pattern of the environment, Am. Zool. 19: 739–752.Google Scholar
  59. Vrijenhoek, R. C., 1972, Genetic relationships of unisexual hybrid fishes to their progenitors using lactate dehydrogenase isozymes as gene markers (Poeciliopsis, Poeciliidae), Am. Nat. 106: 754–766.CrossRefGoogle Scholar
  60. Vrijenhoek, R. C., 1978, Coexistence of clones in a heterogeneous environment, Science 199: 549–552.PubMedCrossRefGoogle Scholar
  61. Vrijenhoek, R. C., 1979a, Factors affecting clonal diversity and coexistence, Am. Zool. 19: 787–797.Google Scholar
  62. Vrijenhoek, R. C., 1979b, Genetics of a sexually reproducing fish in a highly fluctuating environment, Am. Nat. 113: 17–29.CrossRefGoogle Scholar
  63. Vrijenhoek, R. C., 1984, Ecological differentiation among clones: the frozen niche variation model in: Population Biológy and Evolution (K. Wohrmann and V. Loschke, eds.), Springer-Verlag, Heidelberg, Federal Republic of Germany (in press).Google Scholar
  64. Vrijenhoek, R. C., and Lerman, S., 1982, Heterozygosity and developmental stability under sexual and asexual breeding systems, Evolution 36: 786–776.CrossRefGoogle Scholar
  65. Vrijenhoek, R. C., and Schultz, R. J., 1974, Evolution of a trihybrid unisexual fish (Poeciliopsis; Poeciliidae), Evolution 28: 306–319.CrossRefGoogle Scholar
  66. Vrijenhoek, R. C., Angus, R. A., and Schultz, R. J., 1977, Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis, Evolution 31: 767–781.CrossRefGoogle Scholar
  67. Vrijenhoek, R. C., Angus, R. A., and Schultz, R. J., 1978, Variation and clonal structure in a unisexual fish, Am. Nat. 112: 41–55.CrossRefGoogle Scholar
  68. White, M. J. D., 1978, Modes of Speciation, Freeman, San. Francisco.Google Scholar
  69. Williams, G. C., 1975, Sex and Evolution, Princeton University Press, Princeton, New Jersey.Google Scholar
  70. Zaret, T. M., and Rand, A. S., 1971, Competition in tropical stream fishes: Support for the competitive exclusion principle, Ecology 52: 336–342.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert C. Vrijenhoek
    • 1
  1. 1.Department of Biological SciencesBureau of Biological ResearchNew BrunswickUSA

Personalised recommendations