Advertisement

Evolutionary Ecology of Unisexual Fishes

  • William S. Moore
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

The evolutionary ecology of unisexual fishes is distinguished from that of closely related sexual species by two peculiar aspects of their genetics: First, they reproduce, in effect, asexually, and second, their genomic constitutions are invariably identical to those of F1 hybrids. Thus, a major difficulty in analyzing the evolutionary ecology of these species is to determine the extent to which the distinct phenomena of asexuality and hybridity contribute to their successes and failures. That is, where abundance indicates the success of a particular unisexual fish species, is it successful there because it reproduces asexually or because it possesses a hybrid genotype? The ecological consequences of asexuality, in turn, can be more finely divided. Asexually reproducing organisms do not pay the cost of meiosis (Williams, 1975), and, hence, an asexual species has twice the intrinsic rate of increase r of a comparable sexual species (Maynard Smith, 1978). On the other hand, asexual species lack genetic recombination and cannot generate the multiplicity of genotypes possible in a sexual species. This paucity of genotypic variation may limit the effectiveness of selection and, hence, evolutionary potential or it may reduce the aggregate effectiveness of resource utilization because there cannot be a spectrum of “specialized” genotypes in the population.

Keywords

Parental Species Evolutionary Ecology Clonal Diversity Sexual Species Rana Esculenta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramoff, P., Darnell, R. M., and Balsano, J. S., 1968, Electrophoretic demonstration of the hybrid origin of the gynogenetic teleost Poecilia formosa, Am. Nat. 102: 555–558.Google Scholar
  2. Angus, R. A., 1980, Geographic dispersal and clonal diversity in unisexual fish populations, Am. Nat. 115: 531–550.Google Scholar
  3. Angus, R. A., and Schultz, R. J., 1979, Clonal diversity in the unisexual fish Poeciliopsis monacha-lucida: A tissue graft analysis, Evolution 33: 27–40.Google Scholar
  4. Balsano, J. S., and Rasch, E. M., 1974, Microspectrophotometric and enzymatic analyses of fish plasma proteins electrophoretically separated in thin polyacrylamide gels, J. Fish Biol. 6: 51–59.Google Scholar
  5. Balsano, J. S., Darnell, R. M., and Abramoff, P., 1972, Electrophoretic evidence of triploidy associated with populations of the gynogenetic teleost Poecilia formosa, Copeia 1972: 292–297.Google Scholar
  6. Balsano, J. S., Kurcharski, K., Randle, E. J., Rasch, E. M., and Monaco, P. J., 1981, Reduction of competition between bisexual and unisexual females of Poecilia in northeastern Mexico, Environ. Biol. Fish. 6: 39–48.Google Scholar
  7. Barrowclough, G., 1980, Genetic and phenotypic differentiation in a wood warbler (genus Dendroica) hybrid zone, Auk 97: 655–668.Google Scholar
  8. Berger, L. S., 1966, Biometrical studies on the population of green frogs from the environs of Poznan, Ann. Zool. 23: 303–324.Google Scholar
  9. Berger, L. S., 1968, Morphology of the F1 generation of various crosses within Rana esculenta-complex, Acta Zool. Carcov. 13: 301–324.Google Scholar
  10. Berger, L. S., 1973, Systematics and hybridization in European green frogs of Rana esculenta complex, J. Herpetol. 7: 1–10.Google Scholar
  11. Blankenhorn, H. J., Heusser, H., and Vogel, P., 1971, Drei Phaenotypen von Gruenfroeschen aus dem Rana esculenta-Komplex in der Schweiz, Rev. Suisse Zool. 78: 1243–1247.Google Scholar
  12. Bodmer, W. F., 1975, Evolution of HL-A and other major histocompatibility systems, Genetics 79: 293–304.Google Scholar
  13. Bulger, A. J., 1978, Heterosis and thermal adaptations in desert fishes, Ph. D. dissertation, University of Connecticut.Google Scholar
  14. Bulger, A. J., and Schultz, R. J., 1979, Heterosis and clonal variation in thermal tolerance in unisexual fishes, Evolution 33: 848–859.Google Scholar
  15. Cimino, M. C., 1972a, Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae), Science 175: 1484–1486.PubMedGoogle Scholar
  16. Cimino, M. C., 1972b, Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis, Evolution 26: 294–306.Google Scholar
  17. Cimino, M. C., and Schultz, R. J., 1970, Production of a diploid offspring by a gynogenetic triploid fish of the genus Poeciliopsis, Copeia 1970: 760–763.Google Scholar
  18. Clanton, W., 1934, An unusual situation in the salamander Ambystoma jeffersonianum (Green), Occ. Pap. Mus. Zool. (University of Michigan) 290: 1–15.Google Scholar
  19. Cole, C. J., 1975, Evolution of parthenogenetic species of reptiles, in: Intersexuality in the Animal Kingdom ( R. Reinboth, ed.), Springer-Verlag, Berlin, pp. 340–355.Google Scholar
  20. Cole, C. J., 1978, Parthenogenetic lizards, Science 201: 1153–1155.Google Scholar
  21. Cole, C. J., 1979, Chromosome inheritance in parthenogenetic lizards and evolution of allopolyploidy in reptiles, J. Hered. 70: 95–102.Google Scholar
  22. Constanz, G. D., 1975, Behavioral ecology of mating in the male gila topminnow, Poeciliopsis occidentalis (Cyprinodontiformes: Poeciliidae), Ecology 56: 966–973.Google Scholar
  23. Cuellar, O., 1971, Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens, J. Morphol. 133: 139–166.PubMedGoogle Scholar
  24. Cuellar, O., 1976a, Intraclonal histocompatibility in a parthenogenetic lizard: Evidence of genetic homogeneity, Science 193: 150–153.PubMedGoogle Scholar
  25. Cuellar, O., 1976b, Cytology of meiosis in the triploid gynogenetic salamander Ambystoma tremblayi, Chromosoma 58: 355–364.PubMedGoogle Scholar
  26. Cuellar, O., 1977a, Genetic homogeneity and speciation in the parthenogenetic lizards Cnemidophorus velox and C. neomexicanus, evidence from interspecific histocompatibility, Evolution 31: 24–31.Google Scholar
  27. Cuellar, O., 1977b, Animal parthenogenesis, Science 197: 837–843.PubMedGoogle Scholar
  28. Cuellar, O., 1978, Parthenogenetic lizards, Science 201: 1155.PubMedGoogle Scholar
  29. Cuellar, O., 1979, On the ecology of coexistence in parthenogenetic and bisexual lizards of the genus Cnemidophorus, Am. Zool. 19: 773–786.Google Scholar
  30. Cuellar, O., and McKinney, C. O., 1976, Natural hybridization between parthenogenetic and bisexual lizards: Detection of uniparental source by skin grafting, J. Exp. Zool. 196: 341–350.PubMedGoogle Scholar
  31. Darevsky, I. S., 1966, Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola eversman, Ohio Herpetol. Soc. 5: 115–152.Google Scholar
  32. Darnell, R. M., Lamb, E., and Abramoff, P., 1967, Matroclinous inheritance and clonal structure of a Mexican population of the gynogenetic fish, Poecilia formosa, Evolution 21: 168–173.Google Scholar
  33. Drewry, G. E., 1964, Appendix I—Chromosome number, in: C. Hubbs, Interactions between a bisexual fish species and its gynogenetic sexual parasite, Tex. Mem. Mus. Bull. 8: 67–68.Google Scholar
  34. Eisenbrey, A. B., 1980, Evolution of histocompatability diversity in an asexual species, Poeciliopsis 2 monacha-lucida (Pisces: Poeciliidae), Ph. D. dissertation, Wayne State University.Google Scholar
  35. Eisenbrey, A. B., and Moore, W. S., 1981, Evolution of histocompatibility diversity in an asexual vertebrate, Poeciliopsis 2 monacha-lucida (Pisces: Poeciliidae), Evolution 35: 1180–1191.Google Scholar
  36. Eisenbrey, A. B., Buchanan, D. B., and Joswiak, G. R., 1981, Laboratory analysis of feeding behavior of two genetic clones of the asexual Poeciliid, Poeciliopsis 2 monachalucida, The Biologist 63: 92–96.Google Scholar
  37. Engelmann, W. E., 1972, Disk-elektrophorise der serumproteine von Wasserfroschen, ein Beitrag zur Diskussion uber den hybrischarakter von Rana esculenta L, Acta Biol. Med. German. 29: 431–435.PubMedGoogle Scholar
  38. Engelmann, W. E., 1973, Zur frage der verwandtschaftlichen Bezienhungen europaischen Grunfrosche (Guttung Rana), Zool. Jahrb. Abt. Syst. Oekol. Geogra. Tiere 100: 183–196.Google Scholar
  39. Fager, E. W., 1972, Diversity: A sampling study, Am. Nat. 106: 293–310.Google Scholar
  40. Fasset, N. C., 1945, Juniperus virginiana, J. horizontalis and J. scopulorum—IV. Hybrid swarms of J. virginiana and J. horizontalis, Bull. Torrey Bot. Club 72: 379–384.Google Scholar
  41. Felsenstein, J., 1976, The theoretical population genetics of variable selection, Annu. Rev. Genet. 10: 253–280.Google Scholar
  42. Gunther, R., 1969, Untersuchungen zum Artproblem an europaischen anuren der Gattung Rana (Amphibia), Dissertation, Humboldt-Universitat, Berlin.Google Scholar
  43. Gunther, R., 1973, Uber die verwandtschaftlichen beziehunger zwischen den europaischen Grunfroschen und den Bastardcharakter von Rana esculenta L. (Anura), Zool. Anz. 190: 250–285.Google Scholar
  44. Halfman, H., and Mueller, P., 1972, Populations untersuchungen an Gruenfroeschen in Saar-Mosel-Raum, Salamandra 8: 112–116.Google Scholar
  45. Hamilton, W. D., Henderson, P. A., and Moran, N. A., 1980, Fluctuation of environment and coevolved antagonist polymorphism as factors in the maintenance of sex, in: Natural Selection and Social Behavior: Recent Research and Theory ( R. D. Alexander and D. W. Tinkle, eds.), Chiron Press, New York. pp. 363–381.Google Scholar
  46. Hines, W. G. S., and Moore, W. S., 1981, An analysis of sex in random environments, I. Adv. Appl. Prob. 13: 453–463.Google Scholar
  47. Hubbard, J. P., 1969, The relationships and evolution of the Dendroica coronata complex, Auk 86: 393–432.Google Scholar
  48. Hubbs, C., 1964, Interactions between a bisexual fish species and its gynogenetic sexual parasite, Tex. Mem. Mus. Bull. 8: 1–72.Google Scholar
  49. Hubbs, C. L., 1955, Hybridization between fish species in nature, Syst. Zool. 4: 1–20.Google Scholar
  50. Hubbs, C. L., and Hubbs, L. C., 1932, Apparent parthenogenesis in nature, in a form of fish of hybrid origin, Science 76: 628–630.PubMedGoogle Scholar
  51. Hubbs, C. L., and Hubbs, L. C., 1946a, Breeding experiments with the invariably female, strictly matroclinous fish, Mollienesia formosa, Genetics 31: 218.PubMedGoogle Scholar
  52. Hubbs, C. L., and Hubbs, L. C., 1946b, Experimental breeding of the Amazon molly, Aquarium J. 17: 4–6.Google Scholar
  53. Johnson, A. W., Parker, J. G., and Reese, G., 1965, Polyploidy, distribution and environment, in: The Quaternary of the United States (H. E. Wright and D. G. Frey, eds.), Princeton University Press, Princeton, New Jersey, pp. 497–507.Google Scholar
  54. Kallman, K. D., 1962a, Gynogenesis in the teleost, M. formosa with discussion of the detection of parthenogenesis in vertebrates by tissue transplantation, J. Genet. 58: 7–21.Google Scholar
  55. Kaltman, K. D., 1962b, Population genetics of gynogenetic teleost, M. formosa, Evolution 16: 497–504.Google Scholar
  56. Leslie, J. F., and Vrijenhoek, R. C., 1978, Genetic dissection of clonally inherited genomes of Poeciliopsis. I. Linkage analysis and preliminary assessment of deleterious gene loads, Genetics 90: 801–811.PubMedGoogle Scholar
  57. Lowe, C. H., and Wright, J. W., 1966, Evolution of parthenogenetic species of Cnemidophorus (whiptail lizards) in western North America, J. Ariz. Acad. Sci. 4: 81–87.Google Scholar
  58. Lowe, C. H., Wright, J. W., Cole, C. J., and Bezy, R. L., 1970, Natural hybridization between teiid lizards Cnemidophorus sonorae (parthenogenetic) and Cnemidophorus tigris (bisexual), Syst. Zool. 19: 114–127.Google Scholar
  59. Macgregor, H. C., and Uzzell, T. M., 1964, Gynogenesis in Salamanders related to Ambystoma jeffesonianum, Science 143: 1043–1045.PubMedGoogle Scholar
  60. Maslin, T. P., 1967, Skin grafting in bisexual Teiid lizard Cnemidophorus sexlineatus and in unisexual C. tesselatus, J. Exp. Zool. 166: 137–150.PubMedGoogle Scholar
  61. Maslin, T. P., 1968, Taxonomic problems in parthenogenetic vertebrates, Syst. Zool. 17: 219–231.Google Scholar
  62. Maslin, T. P., 1971, Parthenogenesis in reptiles, Am. Zool. 11: 361–380.Google Scholar
  63. Maynard Smith, J., 1971, What use is sex?, J. Theor. Biol. 30: 319–335.Google Scholar
  64. Maynard Smith, J., 1976, A short term advantage for sex and recombination through self-competition, J. Theor. Biol. 63: 245–258.Google Scholar
  65. Maynard Smith, J., 1978, The Evolution of Sex, Cambridge University Press.Google Scholar
  66. Mayr, E., 1963, Animal Species and Evolution, Belknap Press, Cambridge, Massachusetts.Google Scholar
  67. McKay, F. E., 1971, Behavioral aspects of population dynamics in unisexual—bisexual Poeciliopsis (Pisces: Poeciliidae), Ecology 52: 778–790.Google Scholar
  68. McKinney, C. O., Kay, F. R., and Anderson, R. A., 1973, A new all-female species of the genus Cnemidophorus, Herpetologica 29: 361–366.Google Scholar
  69. Menzel, B. W., and Darnell R. M., 1973, Morphology of naturally occurring triploid fish related to Poecilia formosa, Copeia 1973: 350–352.Google Scholar
  70. Meyer, H., 1938, Investigations concerning the reproductive behavior of Mollienesia formosa, J. Genet. 36: 329–366.Google Scholar
  71. Miller, R. S., 1967, Pattern and process in competition, Adv. Ecol. Res. 4: 1–74.Google Scholar
  72. Moore, W. S., 1975, Stability of small unisexual—bisexual populations of Poeciliopsis (Pisces: Poeciliidae), Ecology 56: 791–808.Google Scholar
  73. Moore, W. S., 1976, Components of fitness in the unisexual fish Poeciliopsis monachaoccidentalis, Evolution 30: 564–578.Google Scholar
  74. Moore, W. S., 1977a, A histocompatibility analysis of inheritance in the unisexual fish Poeciliopsis 2 monacha-lucida, Copeia 1977 (2): 213–223.Google Scholar
  75. Moore, W. S., 1977b, An evaluation of narrow hybrid zones in vertebrates, Q. Rev. Biol. 52: 263–277.Google Scholar
  76. Moore, W. S., and Eisenbrey, A. B., 1979, The population structure of an asexual vertebrate, Poeciliopsis 2 monacha-lucida (Pisces: Poeciliidae), Evolution 33 (2): 563–578.Google Scholar
  77. Moore, W. S., and Hines, W. G. S., 1981, Sex in random environments, J. Theor. Biol. 92: 301–316.PubMedGoogle Scholar
  78. Moore, W. S., and McKay, F. E., 1971, Coexistence in unisexual—bisexual species complexes of Poeciliopsis (Pisces: Poeciliidae), Ecology 52: 791–799.Google Scholar
  79. Moore, W. S., and Vrijenhoek, R. C., 1977, The population structure of an asexual vertebrate: Poeciliopsis 2 monacha-lucida, American Society of Ichthyol. Herpetol. Annual Meeting Program, Gainesville, Florida.Google Scholar
  80. Moore, W. S., Miller R. R., and Schultz, R. J., 1970, Distribution, adaptation and probable origin of an all-female form of Poeciliopsis (Pisces: Poeciliidae) in northwestern Mexico, Evolution 24: 789–795.Google Scholar
  81. Muller, H. J., 1964, The relation of recombination to mutational advance, Mutat. Res. 1: 2–9.Google Scholar
  82. Neaves, W. B. 1969. Gene dosage at the lactate dehydrogenase b locus in triploid and diploid lizards (Cnemidophorus), Science 160: 557–559.Google Scholar
  83. Palma-Otal, M., W. S. Moore, and R. P. Adams, 1983, Morphological Chemical and Biogeographical analyses of a hybrid zone involving Juniverus virginiana (L.) and J. horizontalis (Moench) in Wisconsin, Can. J. Botany 61:(in press).Google Scholar
  84. Parker, E. D., 1979, Ecological implications of clonal diversity in parthenogenetic morphospecies, Am. Zool. 19: 753–762.Google Scholar
  85. Parker, E. D., and Selander, R. K., 1976, The organization of diversity in the parthenogenetic lizard Cnemidophorus tesselatus, Genetics 83: 791–805.Google Scholar
  86. Prehn, L. M., and Rasch, E. M., 1969, Cytogenetic studies of Poecilia (Pisces). I. Chromosome numbers of naturally occurring poecliid species and their hybrids from eastern Mexico, Can. J. Genet. Cytol. 11: 888–895.Google Scholar
  87. Rasch, E. M. and Balsano, J. S., 1973, Cytogenetic studies of Poecilia (Pisces). III. Persistence of triploid genomes in the unisexual progeny of triploid females associated with Poecilia, Copeia 1973: 810–813.Google Scholar
  88. Rasch, E. M., and Balsano, J. S., 1974, Biochemical and cytogenetic studies of Poecilia from eastern Mexico. II. Frequency, perpetuation, and probable origin of triploid genomes in females associated with P. formosa, Rev. Biol. Trop. 21: 351–381.Google Scholar
  89. Rasch, E. M., Darnell, R. M., Kallman K. D., and Abramoff, P., 1965, Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish, Poecilia formosa, J. Exp. Zool. 160: 155–170.PubMedGoogle Scholar
  90. Rasch, E. M., Prehn, L. M., and Rasch, R. W., 1970. Cytogenetic studies of Poecilia (Pisces). 11. Triploidy and DNA levels in naturally occurring populations associated with the gynogenetic teleost Poecilia formosa (Girard), Chromosoma (Berl.) 31: 18–40.Google Scholar
  91. Remington, C. L., 1968, Suture zones of hybrid interaction between recently joined biotas, in: Evolutionary Biology, Vol. 2 ( T. Dobzhansky, M. K. Hecht, and W. C. Steere, eds.), Plenum Press, New York, pp. 321–428.Google Scholar
  92. Roughgarden, J., 1979, Theory of Population Genetics and Evolutionary Ecology: An Introduction, Macmillan, New York.Google Scholar
  93. Schall, J. J., 1978, Reproductive strategies in sympatric whiptail lizards (Cnemidophorus), two parthenogenetic and three bisexual species, Copeia 1977: 108–116.Google Scholar
  94. Schultz, R. J., 1961, Reproductive mechanism of unisexual and bisexual strains of the viviparous fish Poeciliopsis, Evolution 25: 302–325.Google Scholar
  95. Schultz, R. J., 1966, Hybridization experiments with an all-female fish of the genus Poeciliopsis, Biol. Bull. 130: 415–429.Google Scholar
  96. Schultz, R. J., 1967, Gynogenesis and triploidy in the viviparous fish Poeciliopsis, Science 157: 1564–1567.PubMedGoogle Scholar
  97. Schultz, R. J., 1969, Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates, Am. Nat. 103: 605–619.Google Scholar
  98. Schultz, R. J., 1971, Special adaptive problems associated with unisexual fishes, Am. Zool. 11: 351–360.Google Scholar
  99. Schultz, R. J., 1973, Unisexual fish: Laboratory synthesis of a species, Science 179: 180–181.PubMedGoogle Scholar
  100. Schultz, R. J., 1977, Evolution and ecology of unisexual fishes, in: Evolutionary Biology, Vol. 10 ( M. K. Hecht, W. C. Steere, and B. Wallace, eds.), Plenum Press, New York, pp. 277–331.Google Scholar
  101. Schultz, R. J., Kallman, K. D., 1968, Triploid hybrids between the all-female teleost Poecilia formosa and Poecilia sphenops, Nature 219: 280–282.Google Scholar
  102. Seiler, J., 1943, Über den ursprung der Parthenogenese und Polyploidie bei Schmetterlingen, Arch. Klaus-Stift. Vererb.-Forsch. 18: 691–699.Google Scholar
  103. Seiler, J., 1946, Die Verbreitungsgebiete der verschiedenen Rassen von Solenobia triquetrella (Psychidae) in der Schweiz, Rev. Suisse Zool. 53: 529–533.Google Scholar
  104. Short, L. L., 1965, Hybridization in the flickers (Colaptes) of North America, Bull. Am. Mus. Nat. Hist. 129: 307–428.Google Scholar
  105. Simpson, E. H., 1949, Measurement of diversity, Nature 163: 688.Google Scholar
  106. Stebbins, G. L., 1950, Variation and Evolution in plants, Columbia University Press, New York.Google Scholar
  107. Stebbins, G. L., 1966, Chromosomal variation and evolution, Science 152: 1463–1469.PubMedGoogle Scholar
  108. Suomalainen, E., 1953, Die Polyploidie bei den parthenogenetischen Rüsselkäfern, Zool. Anz. Suppl. 17: 280–289.Google Scholar
  109. Thibault, R. E., 1974a, The ecology of unisexual and bisexual fishes of the genus Poeciliopsis: A study in niche relationships, Ph. D. dissertation, University of Connecticut. Thibault, R. E., 1974b, Genetics of cannibalism in a viviparous fish and its relationship to population density, Nature 251: 138–140.Google Scholar
  110. Thibault, R. E., 1978, Ecological and evolutionary relationships among diploid and triploid unisexual fishes associated with the bisexual species, Poeciliopsis lucida (Cyprinodontiformes: Poeciliidae), Evolution 32: 613–623.Google Scholar
  111. Thibault, R. E. and R. J. Schultz, 1978, Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae), Evolution 32: 320–333.Google Scholar
  112. Tunner, H. G., 1970, Das serumeiweisbild einheimischer wasserfrosche und der hybridcharakter von Rana esculenta, Verh. Dsch. Zool. Ges. 64: 352–358.Google Scholar
  113. Tunner, H. G., 1972, Serologische and morphologische untersuchungen zur frage der artabgrenzung bei wasserfroschen aus der umgebung von Mainz (Rhein-Maingebert), Z. Zool. Syst. Evolutionsforsch. 10: 127–132.Google Scholar
  114. Tunner, H. G., 1973, Das albumin and andere bluteiweisse bei Rana ridibunda Pallas, Rana lessonae Camerano, Rana esculenta Linne and deren hybriden, Z. Zool. Syst. Evolutions forsch. 11: 219–235.Google Scholar
  115. Turner, B. J., Brett, B. H., and Miller, R. R., 1980a, Interspecific hybridization and the evolutionary origin of a gynogenetic fish, Poecilia formosa, Evolution 34 (5): 917–922.Google Scholar
  116. Turner, B. J., Brett, B. H., Rasch, E. M., and Balsano, J. S., 1980b, Evolutionary genetics of a gynogenetic fish, Poecilia formosa, the Amazon Molly, Evolution 34 (2): 246–258.Google Scholar
  117. Uzzell, T. M., 1963, Natural triploidy in salamanders related to Ambystoma jefferisonianum, Science 39: 113–115.Google Scholar
  118. Uzzell, T. M., 1964, Relations of the diploid and triploid species of the Ambystoma jeffersonianum complex (Amphibia, Caudata), Copeia 1964: 257–300.Google Scholar
  119. Uzzell, T. M., 1969, Notes on spermatophore production by salamanders of the Ambystoma jeffersonianum complex, Copeia 1969: 602–612.Google Scholar
  120. Uzzell, T. M., and Berger, L., 1975, Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate Rana esculenta, Proc. Acad. Nat. Sci. Phila. 127: 13–24.Google Scholar
  121. Uzzell, T. M., and Darevsky, I. S., 1975, Biochemical evidence for the hybrid origin of the parthenogenetic species of the Lacerta saxicola complex (Sarnia: Lacertidae), with a discussion of some ecological and evolutionary implications, Copeia 1975: 204–222.Google Scholar
  122. Uzzell, T. M., and Goldblatt, S. M., 1967, Serum proteins of salamanders of the Ambystoma jeffersonianum complex, and the origin of the triploid species of this group, Evolution 21: 345–354.Google Scholar
  123. Uzzell, T. M., Berger, L., and Gunther, R., 1975, Diploid and triploid progeny from a diploid female of Rana esculenta (Amphibia Salientia), Proc. Acad. Nat. Sci. Phila. 127: 81–89.Google Scholar
  124. Uzzell, T. M., Gunther, R., and Berger, S., 1977, Rana ridibunda and R. esculenta: A leaky hybridogenetic system (Amphibia Salientia), Proc. Acad. Nat. Sci. Phil. 128: 147–171.Google Scholar
  125. Vanzolini, P. E., 1978, Parthenogenetic lizards, Science 201: 1152.PubMedGoogle Scholar
  126. Vrijenhoek, R. C., 1972, Genetic relationships of unisexual-hybrid fishes to their progenitors using lactate dehydrogenase isozymes as gene markers (Poeciliopsis, Poeciliidae), Am. Nat. 106: 754–766.Google Scholar
  127. Vrijenhoek, R. C., 1978, Coexistence of clones in a heterogeneous environment, Science 199: 549–552.PubMedGoogle Scholar
  128. Vrijenhoek, R. C., 1979, Factors affecting clonal diversity and cóexistence, Am. Zool. 19: 787–797.Google Scholar
  129. Vrijenhoek, R. C., and Schultz, R. J., 1974, Evolution of a trihybrid unisexual fish (Poeciliopsis, Poeciliidae), Evolution 28: 306–319.Google Scholar
  130. Vrijenhoek, R. C., Angus, R. A., and Schultz, R. J., 1977, Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis, Evolution 31: 767–781.Google Scholar
  131. Vrijenhoek, R. C., Angus, R. A., and Schultz, R. J., 1978, Variation and clonal structure in a unisexual fish, Am. Nat. 112: 41–55.Google Scholar
  132. White, M. J. D., 1970, Heterozygosity and genetic polymorphism in parthenogenetic animals, in: Essays in Evolution and Genetics in Honor of T. Dobzhansky (M. K. Hecht and W. C. Steere, eds. ), pp. 237–262.Google Scholar
  133. Wilbur, H. M., 1971, The ecological relationship of the salamander Ambystoma laterale to its all-female, gynogenetic associate, Evolution 25: 168–179.Google Scholar
  134. Williams, G. C., 1975, Sex and Evolution, Princeton University Press, Princeton, New Jersey.Google Scholar
  135. Wright, J. W., 1978, Parthenogenetic lizards, Science 201: 1152–1154.PubMedGoogle Scholar
  136. Wright, J. W., and Lowe, C. H., 1968, Weeds, polyploids, parthenogenesis and the geographical and ecological distribution of all-female species of Cnemidophorus, Copeia 1968: 128–138.Google Scholar
  137. Zar, J. H., 1974, Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, New Jersey. Zweifel, R. G., 1965, Variation in and distribution of the unisexual lizard, Cnemidophorus tesselatus, Am. Mus. Novit. 2235: 1–49.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William S. Moore
    • 1
  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA

Personalised recommendations