The Evolutionary Genetics of Xiphophorus

  • Richard Borowsky
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

Fishes of the genus Xiphophorus, the platyfish and swordtails, are common inhabitants of the streams and rivers of Central America. The 15 species described occupy a variety of habitats, ranging widely through the Atlantic drainage from northeastern Mexico, south-east through Guatemala, Honduras and Belize. Like most other members of the family Poeciliidae, Xiphophorus species are internally fertilizing and ovoviviparous (Rosen and Bailey, 1963). Females can store sperm and produce broods for several months after a successful mating.

Keywords

Clay Starch Recombination Silt Gravel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atz, J. W., 1962, Effects of hybridization on pigmentation in fishes of the genus Xiphophorus, Zoologica 47: 153–181.Google Scholar
  2. Bao, I., 1981, The genetic and endocrine control of sexual maturation and sterility in hybrids between Xiphophorus belleri and X. maculatus, Ph. D. dissertation, New York University, New York.Google Scholar
  3. Borowsky, R. L., 1969, Ecological and social factors influencing the polymorphic pigmentation systems of Xiphophorus v. variatus (Pisces: Poeciliidae), Ph. D. dissertation, Yale University, New Haven, Connecticut.Google Scholar
  4. Borowsky, R. L., 1973a, Relative size and the development of fin coloration in Xiphophorus variatus, Physiol. Zool. 46: 22–28.Google Scholar
  5. Borowsky, R. L., 1973b, Social control of adult size in males of Xiphophorus variatus, Nature 245: 332–335.CrossRefGoogle Scholar
  6. Borowsky, R. L., 1978, The tailspot polymorphism of Xiphophorus (Pisces: Poeciliidae), Evolution 32: 886–893.CrossRefGoogle Scholar
  7. Borowsky, R. L., 1981, Tailspots of Xiphophorus and the evolution of conspicuous polymorphism, Evolution 35: 345–358.CrossRefGoogle Scholar
  8. Borowsky, R. L., and Diffley, J., 1981, Synchronized maturation and breeding in natural populations of Xiphophorus variatus, Environ. Biol. Fish. 6: 49–58.CrossRefGoogle Scholar
  9. Borowsky, R. L., and Kallman, K. D., 1976, Patterns of mating in natural populations of Xiphophorus (Pisces: Poeciliidae). I. X. maculatus from Belize and Mexico, Evolution 30: 693–706.CrossRefGoogle Scholar
  10. Borowsky, R. L., and Khouri, J., 1976, Patterns of mating in natural populations of Xiphophorus. II X. variatus from Tamaulipas, Mexico, Copeia 76: 727–734.CrossRefGoogle Scholar
  11. Darnell, R. M., 1962, Fishes of the Rio Tamesi and related coastal lagoons in East-Central Mexico, Publ. Inst. Mar. Sci. Port Aransas Texas 8: 299–365.Google Scholar
  12. Deakin, M. A. B., 1968, Genetic polymorphism in a subdivided population, Aust. J. Biol. Sci. 21: 165–168.PubMedGoogle Scholar
  13. Flores, J., 1981, Oxygen consumption in two morphs of El Charral, Xiphophorus variatus (Pisces: Poeciliidae), Master’s thesis, New York University, New York.Google Scholar
  14. Ford, E. B., 1971, Ecological Genetics, 3d ed., Chapman and Hall, London.Google Scholar
  15. Gandolfi, G., 1971, Sexual selection in relation to the social status of males in Poecilia reticulata (Teleostei: Poeciliidae), Boll. Zool. 38: 35–48.CrossRefGoogle Scholar
  16. Gordon, H., and Gordon, M., 1954, Colour patterns and gene frequencies in natural populations of a platyfish, Heredity 4: 61–73.CrossRefGoogle Scholar
  17. Gordon H., and Gordon, M., 1957, Maintenance of polymorphism by potentially injurious genes in eight natural populations of the platyfish, Xiphophorus maculatus, J. Genet. 55: 1–44.CrossRefGoogle Scholar
  18. Gordon, M., 1927, The genetics of a viviparous top minnow Platypoecilus; the inheritance of two kinds of melanophores, Genetics 12: 253–283.PubMedGoogle Scholar
  19. Gordon, M., 1946, Introgressive hybridization in domesticated fishes. 1. The behavior of comet, a Platypoecilus maculatus gene in Xiphophorus helleri, Zoologica (N. Y.) 31: 77–88.Google Scholar
  20. Gordon, M., 1953, The ecological niche of the pygmy swordtail, Xiphophorus pygmaeus, in the Rio Axtla, Mexico, Copeia 53: 148–150.CrossRefGoogle Scholar
  21. Gordon, M., 1956, An intricate genetic system that controls nine pigment cell patterns in the platyfish, Zoologica 41: 153–162.Google Scholar
  22. Kallman, K. D., 1965, Genetics and geography of sex determination in the poeciliid fish, Xiphophorus maculatus, Genetics 60: 811–828.Google Scholar
  23. Kallman, K. D., 1970, Sex determination and the restriction of sex-linked pigment patterns to the X and Y chromosomes in populations of a poeciliid fish, Xiphophorus maculatus, from the Belize and Sibun rivers of British Honduras, Zoologica (N. Y.) 55: 1–16.Google Scholar
  24. Kallman, K. D., 1975, The Platyfish, Xiphophorus maculatus, In: Handbook of Genetics, Vol. 4 ( R. C. King, ed.), Plenum Press, New York, pp. 81–132.CrossRefGoogle Scholar
  25. Kallman, K. D., 1983, The sex-determination mechanism in the poeciliid Xiphophorus montezumae, Jordan and Snyder and the genetic control of the sexual maturation process and adult size, Copeia 83: 755–769.CrossRefGoogle Scholar
  26. Kallman, K. D., and Atz, J. W., 1966, Gene and chromosome homology in fishes of the genus Xiphophorus, Zoologica 51: 107–135.Google Scholar
  27. Kallman, K. D., and Borkoski, V., 1978, A sex-linked gene controlling the onset of sexual maturity in female and male platyfish (Xiphophorus maculatus), fecundity in females and adult size in males, Genetics 89: 79–119.PubMedGoogle Scholar
  28. Kallman, K. D., and Borowsky, R., 1972, The genetics of gonopodial polymorphism in two species of poeciliid fish, Heredity 28: 297–310.CrossRefGoogle Scholar
  29. Kallman, K. D., and Schreibman, M. P., 1973, A sex-linked gene controlling gonadotrop differentiation and its significance in determining the age of sexual maturation and size of the platyfish, Xiphophorus maculatus, Gen. Comp. Endocrinol. 21: 287–304.PubMedCrossRefGoogle Scholar
  30. Levene, H., 1953, Genetic equilibrium when more than one ecological niche is available, Am. Nat. 87: 331–333.CrossRefGoogle Scholar
  31. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  32. Love, R. M., 1970, The Chemical Biology of Fishes, Academic Press, New York. Ludwig, W., 1950, Zur Theorie der Konkurrenz: die Annidation (Ennischung) als funfter Evolutionsfaktor, Neue Ergeb. Probl. Zool. Klatt-Festschrift 50: 516–537.Google Scholar
  33. McKay, F., 1971, Behavioral aspects of population dynamics in unisexual-bisexual Poeciliopsis (Pisces: Poeciliidae), Ecology 52: 778–790.CrossRefGoogle Scholar
  34. Mitchell, R. W., Russell, W. H., and Elliot, W. R., 1977, Mexican eyeless characin fishes, genus Astyanax: Environment, distribution, and evolution, Museum of Texas Tech University Special Publication No. 12.Google Scholar
  35. Powell, J. R., Levene, H., and Dobzhansky, T., 1972, Chromosomal polymorphism in Drosophila pseudoobscura used for diagnosis of geographic origin, Evolution 26: 553–559.CrossRefGoogle Scholar
  36. Rosen, D. E., 1979, Fishes from the uplands and intermontane basins of Guatemala: Revisionary studies and comparative geography, Bull. Am. Mus. Nat. Hist. 162: 267–376.Google Scholar
  37. Rosen, D. E., and Bailey, R. M., 1963, The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics, Bull. Am. Mus. Nat. Hist. 126: 1–176.Google Scholar
  38. Roughgarden, J., 1979, Theory of Population Genetics and Evolutionary Ecology: An Introduction, Macmillan, New York.Google Scholar
  39. Siciliano, M. J., and Shaw, C. R., 1976, Separation and visualization of enzymes on gels, In: ( Ivor Smith, ed.), Chromatographic and Electrophoretic Techniques, Volt 4th ed., Heineman, London, pp. 185–209.Google Scholar
  40. Smatresk, N. J., and Herreid, C. F., 1980, Group metabolism in swordtails, Xiphophorus helleri, under controlled oxygen conditions, Copeia 80: 562–564.CrossRefGoogle Scholar
  41. Sohn, J. J., 1977, Socially induced inhibition of genetically determined maturation in the platyfish, Xiphophorus maculatus, Science 195: 199–201.PubMedCrossRefGoogle Scholar
  42. Spiess, E. B., 1977, Genes in Populations, Wiley, New York.Google Scholar
  43. Weatherley, A. H., 1972, Growth and Ecology of Fish Populations, Academic Press, New York.Google Scholar
  44. Zander, C. D., 1967, Okologische und morphologische Beitrage zur Systematik und geographischen Verbreitung der Gattung Xiphophorus (Pisces), Mitt. Hamb. Zool. Mus. Inst. 64: 87–125.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard Borowsky
    • 1
  1. 1.Department of BiologyNew York UniversityNew YorkUSA

Personalised recommendations