A New Look at Sex Determination in Poeciliid Fishes

  • Klaus D. Kallman
Part of the Monographs in Evolutionary Biology book series (MEBI)


The recent increased interest in sex-determining mechanisms can be traced directly to Wachtel’s concept that the H-Y antigen is the primary testis organizer. There have been several comprehensive reviews dealing with genetic mechanisms of sex determination and sex differentiation, but all of these deal largely with the mammalian literature and pay only lip service to the other classes of vertebrates (J.W. Gordon and Ruddle, 1981; Haseltine and Ohno, 1981; McCarrey and Abbot, 1979; Ohno, 1979; Wachtel and Ohno, 1979). Of particular interest to geneticists are several cases of atypical sex determination in mammals, including humans, in which an autosomal gene causes the testicular differentiation of XX individuals. This has raised the question as to the location of the male-determining gene.


Pigment Gene Poeciliid Fish Xiphophorus Maculatus Myopus Schisticolor Autosomal Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aida, T., 1930, Further genetical studies of Aplocheilus latipes, Genetics 15: 1–16.PubMedGoogle Scholar
  2. Aida, T., 1936, Sex reversal in Aplocheilus latipes and a new explanation of sex differentiation, Genetics 21: 136–153.PubMedGoogle Scholar
  3. Anders, A., and Anders, F., 1963, Genetisch bedingte XX-♀♀ und XY- und YY-♂♂ beim wilden Platypoecilus maculatus aus Mexico, Z. Vererbungsl. 94: 1–18.CrossRefGoogle Scholar
  4. Anders, A., Anders, F., Förster, W., Klinke, K., und Rase, S., 1969, XX-, XY-, YY-♀♀ und XX-, XY-, YY-♂♂ bei Platypoecilus maculatus ( Poecilüdae ), Zool. Anz. Suppl. 33: 333–337.Google Scholar
  5. Anders, A., Anders, F., and Klinke, K., 1973, II. The arrangement of chromatophore determining loci and regulating elements in the sex chromosomes of xiphophorin fish,Platypoecilus maculatus and Platypoecilus variants, in: Genetics and Mutagenesis of Fish ( J. H. Schröder, ed.), Springer-Verlag, New York, pp. 33–63.CrossRefGoogle Scholar
  6. Atz, J. W., 1964, Intersexuality in fishes, in: Intersexuality in Vertebrates Including Man (A. J. Marshall and C. N. Armstrong, eds.), Academic Press, New York, pp. 145–232. Avtalion, R. R., and Hammerman, I. S., 1978, Sex determination in Sarotherodon (Tilapia). I. Introduction to a theory of autosomal influence, Bamidgeh 30: 110–115.Google Scholar
  7. Bao, I. Y., and Kaltman, K. D., 1982, Genetic control of the hypothalamo-pituitary axis and the effect of hybridization on sexual maturation (Xiphophorus, Pisces, Poeciliidae ), J. Exp. Zool. 220: 297–309.CrossRefGoogle Scholar
  8. Bellamy, W. A., 1936, Inter-specific hybrids in Platypoecilus: one species ZZ—WZ; the other XY—XX, Proc. Natl. Acad. Sci. USA 22: 531–536.PubMedCrossRefGoogle Scholar
  9. Bellamy, A. W., and Queal, M. L., 1951, Heterosomal inheritance and sex determination in Platypoecilus maculatus, Genetics 36: 93–107.PubMedGoogle Scholar
  10. Bennet, D., Mathieson, B. J., Scheid, M., Yanagisawa, K., Boyse, E. A., Wachtel, S. S., and Cattanach, B. M., 1977, Serological evidence for H-Y antigen in Sxr, XX sex-reversed phenotypic males, Nature 265: 255–257.CrossRefGoogle Scholar
  11. Berg, O., and Gordon, M., 1953, Relationship of atypical pigment cell growth to gonadal development in hybrid fishes, in: Pigment Cell Growth ( M. Gordon, ed.), Academic Press, New York, pp. 43–72.Google Scholar
  12. Bernstein, R., Koo, G. C., and Wachtel, S. S., 1980, Abnormality of the X chromosome in human 46, X Y female siblings with dysgenetic ovaries, Science 207: 768–769.PubMedCrossRefGoogle Scholar
  13. Black, D. and Howell, W. M., 1979, A unique case in sex chromosome evolution, Copeia 3: 509–513.CrossRefGoogle Scholar
  14. Breider, H., 1935a, Über Aussenfaktoren, die das Geschlechtsverhältnis bei Xiphophorus helleri Heckel kontrollieren sollen, Z. Wiss. Zool. 146: 383–416.Google Scholar
  15. Breider, H., 1935b, Geschlechtsbestimmung und -differenzierung bei Limia nigrofasciata, caudofasciata, vittata und deren Artbastarden, Z. Indukt. Abstammungs. Vererbungsl. 68: 265–299.CrossRefGoogle Scholar
  16. Breider, H., 1937, Juveniles und adultes Geschlechtsverhaeltnis bei Xiphophorus helleri, Z. Indukt. Abstammungs. Vererbungsl. 73: 371–475.CrossRefGoogle Scholar
  17. Bull, J. J., 1980, Sex determination in reptiles, Quart. Rev. Biol. 55: 3–21.CrossRefGoogle Scholar
  18. Bull, J. J., and Charnov, E. L., 1977, Changes in the heterogametic mechanism of sex determination, Heredity 39: 1–14.PubMedCrossRefGoogle Scholar
  19. Campos, H. H. and Hubbs, C., 1971, Cytomorphology of six species of gambusiine fishes, Copeia 3: 566–569.CrossRefGoogle Scholar
  20. Cattanach, B. M., Pollard, C. E., and Hawkwes, S. G., 1971, Sex-reversed mice: X X and X O males, Cytogenetics 10: 318–337.Google Scholar
  21. Chan, S. T. H., 1980, Natural sex reversal in vertebrates, Phil. Trans. R. Soc. Lond. B 259: 59–71.Google Scholar
  22. Chen, T. R., and Ebeling, A. W., 1968, Karyological evidence for female heterogamety in the mosquitofish, Gambusia affinis, Copeia 1: 70–75.CrossRefGoogle Scholar
  23. Cimino, M. C., 1972, Egg production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis, Evolution 26: 294–306.CrossRefGoogle Scholar
  24. Clemens, H. P., and lnslee, T., 1968, The production of unisexual broods of Tilapia mos-sambica sex-reversed with methyl testosterone, Trans. Am. Fish. Soc. 67: 18–21.CrossRefGoogle Scholar
  25. Cohen, H., Gordon, M., and Nigrelli, R. F., 1941, Spontaneous development of gonopods in females of Platypoecilus maculatus, Anat. Rec. 81 (suppl. 1): 89.Google Scholar
  26. Conover, D. O., and Kynard, B. E., 1981, Environmental sex determination: Interaction of temperature and genotype in a fish, Science 213: 577–579.PubMedCrossRefGoogle Scholar
  27. Dzwillo, M., 1962, Über künstliche Erzeugung funktioneller Männchen weiblichen Genotyps bei Lebistes reticulatus, Biol. Zentralbl. 81: 575–584.Google Scholar
  28. Dzwillo, M., and Zander, C. D., 1967, Geschlechtsbestimmung und Geschlechtsumstim-mung bei Zahnkarpfen ( Pisces ), Mitt. Hamb. Zool. Mus. Inst. 64: 147–162.Google Scholar
  29. Engel, W., Klemme, B., Probeck, H. D., and Hansmann, I., 1981a, H-Y antigen in Turner’s syndrome patients with different sex chromosome constitutions, Hum. Genet. 59: 333–336.PubMedCrossRefGoogle Scholar
  30. Engel, W., Klemme, B., and Ebrecht, A., 1981b, Serological evidence for H-Y antigen in X 0 female mice, Hum. Genet. 57: 68–70.PubMedCrossRefGoogle Scholar
  31. Essenberg, J. M., 1926, Complete sex reversal in the viviparous teleost, Xiphophorus hellen, Biol. Bull. 51: 98–111.Google Scholar
  32. Evans, E. P., M. D. Burtenshaw, and Cattanach, B. M., 1982, Meiotic crossing-over between the X and Y chromosomes of male mice carrying the sex-reversed ( Sxr) factor, Nature 300: 443–445.PubMedCrossRefGoogle Scholar
  33. Fraser, A. C., and Gordon, M., 1929, The genetics of Platypoecilus. II. The linkage of two sex-linked characters, Genetics 14: 160–179.PubMedGoogle Scholar
  34. Fredga, K., Gropp, H., Winking, H., and Frank, F., 1976, Fertile XX- and XY-type females in the wood lemming Myopus schisticolor, Nature 261: 225–227.PubMedCrossRefGoogle Scholar
  35. Fredga, K., Gropp, A., Winking, H., and Frank, F., 1977, A hypothesis explaining the exceptional sex ratio in the wood lemming ( Myopus schisticolor ), Hereditas 85: 101–104.CrossRefGoogle Scholar
  36. Gileva, E. A., and Chebotar, N. A., 1979, Fertile XO males and females in the varying lemming, Dicrostonyx torquatus Pall (1779). A unique genetic system of sex determination, Heredity 42: 67–77.Google Scholar
  37. Gomelsky, B. I., and Fetisov, A. N., 1977, Sex ratio in the swordtail Xiphophorus hellen Heckel (Cyprinodontiformes, Poeciliidae) at different stages of ontogenesis in connection with the problem of sex differentiation, Vopr. Ikhtiol. 17: 767–769.Google Scholar
  38. Gordon, J. W., and Ruddle, F. H., 1981, Mammalian gonadal determination and gametogenesis, Science 211: 1265–1271.PubMedCrossRefGoogle Scholar
  39. Gordon, M., 1937, Heritable color variations in the Mexican swordtail fish, J. Hered. 28: 222–230.Google Scholar
  40. Gordon, M., 1938, The genetics of Xiphophorus hellerii: Heredity in Montezuma, a Mexican swordtail fish, Copeia 1: 19–29.CrossRefGoogle Scholar
  41. Gordon, M., 1956, Evidence for complete sex reveral in fishes, Aquarist Pondkeeper 21:66–69.Google Scholar
  42. Gordon, M., and Benzer, P., 1945, Sexual dimorphism in the skeletal elements of the gonopodial suspensoria in xiphophorin fishes, Zoologica (N. Y.) 30: 57–72.Google Scholar
  43. Grobstein, C., 1942, Endocrine and developmental studies of gonopod differentiation in certain poeciliid fishes, J. Exp. Zool. 89: 305–328.CrossRefGoogle Scholar
  44. Halpern-Sebold, L. R. and Schreibman, M. P., 1983, Ontogeny of centers containing luteinizing hormone-releasing hormone in the brain of platyfish ( Xiphophorus maculatus) as determined by immunocytochemistry, Cell Tissue Res. 229: 75–84.PubMedCrossRefGoogle Scholar
  45. Hamerton, J. L., Dickson, J., Pollard, C. E., Grieves, S. A., and Short, R. V., 1969, Genetic intersexuality in goats, J. Reprod. Fertil. Suppl. 7: 25–51.PubMedGoogle Scholar
  46. Hansmann, I., 1982, Sex reversal in the mouse, Cell 30: 331–332.PubMedCrossRefGoogle Scholar
  47. Harms, J. W., 1929, Realisation von Genen and die consecutive Adaption. I. Phasen in der Differenzierung der Anlagekomplexe and die Frage der Landtierwerdung, Z. Wiss. Zool. 133: 211–397.Google Scholar
  48. Harrington, R. W., Jr., 1967, Environmentally controlled induction of primary male gonochorists from eggs of the self-fertilizing hermaphroditic fish, Rivulus marmoratus Poey, Biol. Bull. 131: 174–199.Google Scholar
  49. Harrington, R. W., Jr., 1971, How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes, Copeia 3: 389–432.CrossRefGoogle Scholar
  50. Haseltine, F. P., and Ohno, S., 1981, Mechanisms of gonadal differentiation, Science 211: 1272–1278.PubMedCrossRefGoogle Scholar
  51. Haskins, C. P., Haskins, E. F., McLaughlin, J. J. A., and Hewitt, R. E., 1961, Polymorphism and population structure in Lebistes reticulatus, an ecological study, in: Vertebrate Speciation ( W. F. Blair, ed.), University of Texas Press, Austin, Texas, pp. 320–395.Google Scholar
  52. Haskins, C. P., Young, P., Hewitt, R. E., and Haskins, E. F., 1970, Stabilized heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus, Heredity 25: 575–589.CrossRefGoogle Scholar
  53. Herbst, E. W., Fredga, K., Frank, F., and Winking, H., 1978, Cytogenetic identification of two X-chromosome types in the wood lemming ( Myopus schisticolor ), Chromosoma 69: 185–191.CrossRefGoogle Scholar
  54. Kallman, K. D., 1965, Genetics and geography of sex determination in the poeciliid fish, Xiphophorus maculatus, Zoologica (N. Y.) 50: 151–190.Google Scholar
  55. Kallman, K. D., 1968, Evidence for the existence of transformer genes for sex in the teleost Xiphophorus maculatus, Genetics 60: 811–828.PubMedGoogle Scholar
  56. Kallman, K. D., 1970, Sex determination and the restriction of pigment patterns to the X and Y chromosomes in populations of the poeciliid fish, Xiphophorus maculatus, from the Belize and Sibun Rivers of British Honduras, Zoologica (N. Y.) 55: 1–16.Google Scholar
  57. Kallman, K. D., 1973, The sex-determining mechanism of the platyfish, Xiphophorus maculatus, in: Genetics and Mutagenesis of Fish, ( J. H. Schröder, ed.), Springer-Verlag, New York, pp. 19–28.CrossRefGoogle Scholar
  58. Kallman, K. D., 1975, The platyfish, Xiphophorus maculatus, in: Handbook of Genetics, Vol. 4 ( R. C. King, ed.), Plenum Press, New York, pp. 81–132.CrossRefGoogle Scholar
  59. Kallman, K. D., 1983, The sex-determining mechanism of the poeciliid fish, Xiphophorus montezumae Jordan and Snyder and the genetic control of the sexual maturation process and adult size, Copeia, 3: 755–769.CrossRefGoogle Scholar
  60. Kallman, K. D., and Atz, J. W., 1966, Gene and chromosome homology in fishes of the genus Xiphophorus, Zoologica (N. Y. ) 51: 107–135.Google Scholar
  61. Kallman, K. D., and Borkoski, V., 1978, A sex-linked gene controlling the onset of sexual maturity in female and male platyfish ( Xiphophorus maculatus), fecundity in females and adult size in males, Genetics 89: 79–119.Google Scholar
  62. Kallman, K. D., and Borowsky, R., 1972, The genetics of gonopodial polymorphism in two species of poeciliid fish, Heredity 28: 297–310.CrossRefGoogle Scholar
  63. Kallman, K. D., and Schreibman, M. P., 1973, A sex-linked gene controlling gonadotrop differentiation and its significance in determining the age of sexual maturation and size of the platyfish, Xiphophorus maculatus, Gen. Comp. Endocrinol. 21: 287–304.CrossRefGoogle Scholar
  64. Kosswig, C., 1928, Über Kreuzungen zwischen den Teleostiern Xiphophorus helleri und Platypoecilus maculatus, Z. Indukt. Abstammungs. Vererbungsl. 52: 114–120.CrossRefGoogle Scholar
  65. Kosswig, C., 1932, Hermaphroditismus im Tierreich vom genetischen Standpunkt, Züchter 4: 22–32.Google Scholar
  66. Kosswig, C., 1935, Die Kreuzung zweier XX- bzw. XY-Geschlechter miteinander und der Ersatz eines Y-Chromosoms einer Art durch das X-Chromosom einer anderen, Züchter 7: 40–48.Google Scholar
  67. Kosswig, C., 1937, Genotypische und phänotypische Geschlechtsbestimmung bei Zahnkarpfen. VII. ( Kreuzungen mit Platypoecilus xiphidium ), Wilhelm Roux’ Arch. Entwicklungs. Org. 136: 491–528.Google Scholar
  68. Kosswig, C., 1939, Die Geschlechtsbestimmung in Kreuzungen zwischen Xiphophorus und Platypoecilus, Rev. Fac. Sci. Univ. Istanbul Ser. B Sci. Nat. 4: 91–144.Google Scholar
  69. Kosswig, C., 1941, Mitteilungen zum Geschlechtsbestimmungs-problem bei Zahnkarpfen,Rev. Fac. Sci. Univ. Istanbul Ser. B Sci. Nat. 6: 1–32.Google Scholar
  70. Kosswig, C., 1959, Beiträge zur genetischen Analyse xiphophoriner Zahnkarpfen, Biol. Zentralbl. 78: 711–718.Google Scholar
  71. Kosswig, C., 1964, Polygenic sex determination, Experientia 20: 190–199.PubMedCrossRefGoogle Scholar
  72. Kosswig, C., und Oktay, M., 1955, Die Geschlechtsbestimmung bei den Xiphophorini (Neue Tatsachen und neue Deutungen), Istanbul Univ. Fen Fak. Hidrobiol. B 2: 133–156.Google Scholar
  73. Lodi, E., 1980, Sex inversion in domesticated strains of the swordtail Xiphophorus helleri Heckel (Pisces, Osteichthyes ), Bull. Zool. 47: 1–8.CrossRefGoogle Scholar
  74. MacIntyre, P. A., 1961, Spontaneous sex reversals of genotypic males in the platyfish ( Xiphophorus maculatus ), Genetics 46: 575–580.PubMedGoogle Scholar
  75. McCarrey, J. R., and Abbot, V. K., 1979, Mechanisms of genetic sex determination, gonadal sex differentiation and germ-cell development in animals, Adv. Genet. 20: 217–290.PubMedCrossRefGoogle Scholar
  76. Miller, L., 1962, The Eichwald—Silmser phenomenon in an inbred strain of platyfish, Trans-plant. Bull. 30: 147.Google Scholar
  77. Mortimer, C. H., McNeilly, A. S., Murray, M. A. F., Fisher, R. A. F., and Besser, G. M., 1974, Gonadotropin releasing hormone therapy in hypogonadal males with hypothalamic pituitary dysfunction, Br. Med. J. 4: 617–621.PubMedCrossRefGoogle Scholar
  78. Müller, U., and Wolf, U., 1979, Cross-reactivity to mammalian anti-H-Y antiserum in teleostean fish, Differentiation 14: 185–187.PubMedCrossRefGoogle Scholar
  79. Nagai, Y., Ciccarese, S., and Ohno, S., 1979, The identification of human H-Y antigen and testicular transformation induced by its interaction with the receptor site of bovine fetal ovarian cells, Differentiation 13: 155–164.PubMedCrossRefGoogle Scholar
  80. Ohno, S., 1967, Sex chromosomes and sex-linked genes, in: Monographs in Endocrinology, Vol. 1, Springer-Verlag, New York, p. 192.Google Scholar
  81. Ohno, S., 1979, Major sex-determining genes, in: Monographs in Endocrinology, Vol. 11, Springer-Verlag, New York, p. 142.Google Scholar
  82. Ohno, S., Nagai, Y., and Ciccarese, S., 1978, Testicular cells lysostripped of H-Y antigen organize ovarian follicle-like aggregates, Cytogenet. Cell Genet. 20: 351–364.PubMedCrossRefGoogle Scholar
  83. Öktay, M., 1959a, Über Ausnahmemaennchen bei Platypoecilus maculatus und eine neue Sippe mit XX-Maennchen und XX-Weibchen, Rev. Fac. Sci. Univ. Istanbul Ser. B Sci. Nat. 24: 75–92.Google Scholar
  84. Öktay, M., 1959b, Weitere Untersuchungen über eine Ausnahme (XX-) Sippe des Platypoecilus maculatus mit polygener Geschlechtsbestimmung, Rev. Fac. Sci. Istanbul Ser. B Sci. Nat. 24: 225–233.Google Scholar
  85. Öktay, M., 1963, Die Rolle artfremder Gonosomen bei der Geschlechtsbestimmung von Bastarden mit Platypoecilus xiphidium, Istanbul Univ. Fen Fak. Hidrobiol. B 4: 1–13.Google Scholar
  86. Park, E. H. and Grimm, H., 1981, Distribution of C-band heterochromatin in the ZW sex chromosomes of European and American eels (Anguillidae, Teleostomi ), Cytogenet.Cell Genet. 31: 167–174.PubMedCrossRefGoogle Scholar
  87. Pechan, P., Wachtel, S. S., and Reinboth, R., 1979, H-Y antigen in the teleost, Differen-tiation 14: 189–192.CrossRefGoogle Scholar
  88. Peters, G., 1964, Vergleichende Untersuchungen an drei Subspecies von Xiphophorus helleri Heckel ( Pisces ), Z. Zool. Syst. Evolutionsforsch. 2: 185–271.CrossRefGoogle Scholar
  89. Rimoin, D. L., and Schimke, R. N., 1971, Genetic Disorders of the Endocrine Gland, V. C. Mosby, St. Louis, Missouri.Google Scholar
  90. Rosen, D. E., 1979, Fishes from the uplands and intermontane basins on Guatemala: Revisionary studies and comparative geography, Bull. Am. Mus. Nat. Hist. 162 (5): 267–376.Google Scholar
  91. Rosen, D. E., and Bailey, R. M., 1963, The poeciliid fishes ( Cyprinodontiformes), their structure, zoogeography, and systematics, Bull. Am. Mus. Nat. Hist. 126: 1–176.Google Scholar
  92. Rosen, D. E., and Kallman, K. D., 1959, Development and evolution of skeletal deletions in a family of viviparous fishes (Cyprinodontiformes, Poeciliidae ), Q. J. Fla. Acad. Sci. 22: 169–190.Google Scholar
  93. Schmidt, H., 1930, Geschlechtsumwandlungen bei tropischen Zierfischen, Züchter 2:297–305. Schreibman, M. P., and Kallman, K. D., 1977, The genetic control of the pituitary-gonadal Google Scholar
  94. axis in the platyfish, Xiphophorus maculatus, J. Exp. Zool. 200: 277–294.Google Scholar
  95. Schröder, J. H., 1964, Genetische Untersuchungen an domestizierten Stämmen der Gattung Mollienesia ( Poeciliidae ), Zool. Beitr. 10: 369–463.Google Scholar
  96. Schultz, R. J., 1961, Reproductive mechanisms of unisexual and bisexual strains of the viviparous fish Poeciliopsis, Evolution 15: 302–325.CrossRefGoogle Scholar
  97. Schultz, R. J., 1969, Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis ( Poeciliidae) and other vertebrates, Am. Nat. 103: 605–619.CrossRefGoogle Scholar
  98. Schultz, R. J., 1973, Origin and synthesis of a unisexual fish, in: Genetics and Mutagenesis of Fish ( J. H. Schröder, ed.). Springer-Verlag, New York, pp. 207–211.CrossRefGoogle Scholar
  99. Schultz, R. J., 1977, Evolution and ecology of unisexual fishes. in: Evolutionary Biology, Vol. 10 ( M. K. Hecht, W. C. Steere, and B. Wallace, eds.), Plenum Press, New York, pp. 277–331.Google Scholar
  100. Sengün, A., 1941, Ein Beitrag zur Geschlechtsbestimmung bei Platypoecilus maculatus und Xiphophorus helleri, Istanbul Univ. Fen Fak. Mecm. Seri B 4: 33–48.Google Scholar
  101. Shalev, A., and Huebner, E., 1980, Expression of H-Y antigen in the guppy ( Lebistes reticulatus ), Differentiation 16: 81–83.PubMedCrossRefGoogle Scholar
  102. Shalev, A., Short, R. V., and Hamerton, J. L., 1980, Immunogenetics of sex determination in the polled goat, Cytogenet. Cell Genet. 28: 195–202.PubMedCrossRefGoogle Scholar
  103. Singh, L., and Jones, K. W., 1982, Sex reversal in the mouse ( Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome, Cell 28: 205–216.PubMedCrossRefGoogle Scholar
  104. Thompson, F. H., 1978, H-Y antigen loci, Science 201: 842.PubMedCrossRefGoogle Scholar
  105. Turner, C. L., 1942, Gonopodial characteristics produced in the anal fins of females of Gambusia affinis affinis by treatment with ethinyl testosterone, Biol. Bull. 80: 371–383.CrossRefGoogle Scholar
  106. Vallowe, H. H., 1957, Sex differentiation in the teleost fish, Xiphophorus helleri, as modified by experimental treatment, Biol. Bull. 112: 422–429.CrossRefGoogle Scholar
  107. Vivien, J., and Mohsen, T., 1952, Action de l’anhydrooxyprogesterone sur les caracteres sexuels squelettiques du xiphophore, C. R. Soc. Biol. Paris146: 773–777.PubMedGoogle Scholar
  108. Vrijenhoek, R. C., and Schultz, R. J., 1974, Evolution of a trihybrid unisexual fish (Poe-ciliopsis, Poeciliidae ), Evolution 28: 306–319.CrossRefGoogle Scholar
  109. Wachtel, S. S., 1977, H-Y antigen and the genetics of sex determination, Science 198:797–799. Wachtel, S. S., 1981, Induction of the heterogametic gonad, in: Levels of Genetic Control in Development ( S. Subtelny and U. K. Abbot, eds.), A. R. Liss, New York, pp. 219–234.Google Scholar
  110. Wachtel, S. S., 1983, H-Y antigen and the biology of sex determination, Grune-Stratton, p. 302.Google Scholar
  111. Wachtel, S. S., and Ohno, S., 1979, The immunogenetics of sexual development, Prog. Med. Genet. 3: 109–142.PubMedCrossRefGoogle Scholar
  112. Wachtel, S. S., Ohno, S., Koo, G. C., and Boyce, E. A., 1975a, Possible role for H-Y antigen in the primary determination of sex, Nature 257: 235–236.PubMedCrossRefGoogle Scholar
  113. Wachtel, S. S., Koo, G. C., Breg, W. R., Elias, S., Boyse, E. A., and Miller, O. J., 1975b, Expression of H-Y antigen in human males with two Y chromosomes, N. Engl. J. Med. 293: 1070–1072.CrossRefGoogle Scholar
  114. Wachtel, S. S., Koo, G. C., and Boyce, E. A., 1975c, Evolutionary conservation of H-Y (`male’) antigen, Nature 254: 270–272.PubMedCrossRefGoogle Scholar
  115. Wachtel, S. S., Koo, G. C., Ohno, S., Gropp, A., Dev, V. G., Tantravahi, R., Miller, D. A., and Miller, O. J., 1976, H-Y antigen and the origin of XY female wood lemmings ( Myopus schisticolor ), Nature 264: 638–639.PubMedCrossRefGoogle Scholar
  116. Wachtel, S. S., Koo, G. C., and Ohno, S., 1977, H-Y antigen and male development, in: The Testis in Normal and Infertile Men ( P. Troen and H. R. Nankin, eds.), Raven Press, New York, pp. 35 - 43.Google Scholar
  117. Wachtel, S. S., Bresler, P. A., and Koide, S. S., 1980a, Does H-Y antigen induce the heterogametic ovary?, Cell 20: 859–864.PubMedCrossRefGoogle Scholar
  118. Wachtel, S. S., Koo, G. C., Breg, W. R., and Genet, M., 1980b, H-Y antigen in X,i (Xq) gonadal dysgenesis: Evidence of X-linked genes in testicular differentiation, Hum.Genet. 56: 183–187.PubMedCrossRefGoogle Scholar
  119. Wachtel, S. S., Hall, J. L., and Cahill, L. T., 1981, H-Y antigen in primary sex Bioregulators of Reproduction (G. Jagiello and H. J. Vogel, eds.), Academic Press, New York, pp. 9 - 24.Google Scholar
  120. White, M. J. D., 1973, Animal Cytology and Evolution, Cambridge University Press, New York.Google Scholar
  121. Wiberg, U., 1982, Serological cross-reactivity to rat anti H-Y antiserum in the female European eel ( Anguilla anguilla ), Differentiation 21: 206–208.PubMedCrossRefGoogle Scholar
  122. Wiberg, U., Mayerova, A., Müller, U., Fredga, K., and Wolf, U., 1982, X-linked genes of the H-Y antigen system in the wood lemming ( Myopus schisticolor ), Hum. Genet. 60: 163–166.PubMedCrossRefGoogle Scholar
  123. Winge, O., 1930, On the occurrence of XX males in Lebistes, with remarks on Aida’s so-called “Non-Disjunctional” males in Aplocheilus, J. Genet. 23: 69–76.CrossRefGoogle Scholar
  124. Winge, O., 1934, The experimental alteration of sex chromosomes into autosomes and vice versa, as illustrated by Lebistes. C. R. Tray. Lab. Carlsberg Ser. Physiol. 21: 1–49.Google Scholar
  125. Winge, O., and Ditlevsen, E., 1938, A lethal gene in the Y chromosome of Lebistes, C. R. Tray. Carlsberg Ser. Physiol. 22: 203–210.Google Scholar
  126. Winge, O., and Ditlevsen, E., 1948, Colour inheritance and sex determination in Lebistes, C. R. Tray. Lab. Carlsberg Ser. Physiol. 24: 227–248.Google Scholar
  127. Witschi, E., 1959, Age of sex-determining mechanisms in vertebrates, Science 130:372–375.PubMedCrossRefGoogle Scholar
  128. Wolf, U., 1979, XY gonadal dysgenesis and the H-Y antigen, Hum. Genet. 47: 269–277.Google Scholar
  129. Wolf, U., Fraccaro, M., Mayerova, A., Hecht, T., Zuffardi, O., and Hameister, H., 1980, Turner syndrome patients are H-Y positive, Hum. Genet. 54: 315–318.PubMedCrossRefGoogle Scholar
  130. Yamamoto, T., 1958, Artificial induction of functional sex-reversal in genotypic females of the medaka ( Oryzias latipes ), J. Exp. Zool. 137: 227–264.PubMedCrossRefGoogle Scholar
  131. Yamamoto, T., 1959, A further study on induction of functional sex-reversal in genotypic males of the medaka ( Oryzias latipes) and progenies of sex-reversals, Genetics 44: 739–757.Google Scholar
  132. Yamamoto, T., 1963, Induction of reversal in sex differentiation of YY zygotes in the medaka, Oryzias latipes, Genetics 48: 293–306.PubMedGoogle Scholar
  133. Yamamoto, T., 1964a, The problem of viability of YY zygotes in the medaka, Oryzias latipes, Genetics 50: 45–58.Google Scholar
  134. Yamamoto, T., 1964b, Linkage map of sex chromosomes in the medaka, Oryzias latipes, Genetics 50: 59–64.PubMedGoogle Scholar
  135. Yamamoto, T., 1967, Estrone-induced white YY females and mass production of white YY males in the medaka, Oryzias latipes, Genetics 55: 329–336.Google Scholar
  136. Yamamoto, T., and Kajishima, T., 1968, Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamety, J. Exp. Zool. 168: 215–221.PubMedCrossRefGoogle Scholar
  137. Zander, C. D., 1964, Physiologische und genetische Untersuchungen zur Systematik xiph-ophoriner Zahnkarpfen, Mitt. Hamb. Zool. Mus. Inst. Kosswig-Festschrift 1964: 333–348.Google Scholar
  138. Zander, C. D., 1965, Die Geschlechtsbestimmung bei Xiphophorus montezumae cortezi Rosen ( Pisces), Z. Vererbungsl. 96: 128–141.CrossRefGoogle Scholar
  139. Zander, C. D., 1968, Über die Vererbung von Y-gebundenen Farbgenen des Xiphophorus pygmaeus nigrensis Rosen, Mol. Gen. Genet. 101: 29–42.PubMedCrossRefGoogle Scholar
  140. Zander, C. D., 1969, Über die Entstehung und Veränderung von Farbmustern in der Gattung Xiphophorus (Pisces). I. Qualitative Veränderungen nach Artkreuzung, Mitt. Hamb. Zool. Mus. Inst. 66: 241–271.Google Scholar
  141. Zenzes, M. T., Wolf, U., Günther, E., and Engel, W., 1978a, Studies on the function of H-Y antigen: Dissociation and reorganization experiments on rat gonadal tissue, Cytogenet. Cell Genet. 20: 365–371.CrossRefGoogle Scholar
  142. Zenzes, M. T., Wolf, U., and Engel, W., 1978b, Organization in vitro of ovarian cells into testicular structures, Hum. Genet. 44: 333–338.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Klaus D. Kallman
    • 1
  1. 1.Genetics Laboratory, Osborn Laboratories of Marine Sciences, New York AquariumNew York Zoological SocietyBrooklynUSA

Personalised recommendations