Tetraploidy and the Evolution of the Catostomid Fishes

  • Stephen D. Ferris
Part of the Monographs in Evolutionary Biology book series (MEBI)


The catostomid fishes provide an excellent opportunity to follow the evolutionary fates of duplicate genes. The genomes of these fish are still in a state of flux owing to polyploidization some 50 million years ago. The time of origin of these fish is advantageous in understanding the overall picture of genome evolution in eukaryotes. Catostomids, or the suckers, are not so recent in origin that duplicate genes are identical in structure and regulation, yet not so old that most homologies have been erased by the passage of time. This chapter will explore the many facets of tetraploidy as they effect the evolution in the catostomids, and further, to view the catostomids as a model for genome evolution in other taxa, including the early vertebrates. Finally, I will outline directions that promise to be fruitful in extending the model in the future.


Creatine Kinase Gene Silence Gene Duplication Null Allele Tandem Duplication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F. W., 1975, Genetic variability in a species possessing extensive gene duplication: “Genetic interpretation of duplicate loci and examination of variation in populations of rainbow trout”, Ph.D. dissertation, University of Washington.Google Scholar
  2. Allendorf, F.W., 1978, Protein polymorphism and the rate of loss of duplicate gene expression, Nature 272: 76–78.PubMedCrossRefGoogle Scholar
  3. Allendorf, F. W., 1979, Rapid loss of duplicate gene expression by natural selection, Heredity 43: 247–258.CrossRefGoogle Scholar
  4. Allendorf, F. W., Utter, F. M., and May, B. P., 1975. Gene duplication within the family Salmonidae: II. Detection and determination of the genetic control of duplicate loci through inheritance studies and the examination of populations. in: Isozymes IV: Genetics and Evolution ( C. L. Markert, ed.), Academic Press, New York, pp. 415–432.Google Scholar
  5. Avise, J. C., 1977, Genic heterozygosity and rate of speciation, Paleontology 3: 422–432.Google Scholar
  6. Avise, J. C., and Kitto, B. G., 1973, Phosphoglucose isomerase gene duplication in the bony fishes, an evolutionary history, Biochem. Genet. 8: 113–132.PubMedCrossRefGoogle Scholar
  7. Bachman, K., and Bogart, J. P., 1975, Comparative cytochemical measurements in diploidtetraploid species pair of hylid frogs Hyla chrysocelis and H. versicolor, Cytogenet. Cell Genet. 15: 186–194.CrossRefGoogle Scholar
  8. Bailey, G. S., Tsuyuki H., and Wilson, A. C., 1976, The number of genes for lactate dehydrogenase in salmonid fishes, J. Fish. Res. Board Can. 33: 760–767.CrossRefGoogle Scholar
  9. Bailey, G. S., Poulter, R. T. M., and Stockwell, P. A., 1978, Gene duplication in tetraploid fish. Model for gene silencing at unlinked duplicate loci, Proc. Natl. Acad. Sci. USA 75: 5575–5579.PubMedCrossRefGoogle Scholar
  10. Becak, M. L., Becak, W., and Rabello, M. N., 1966, Cytological evidence of constant tetraploidy in the bisexual South American frog Odontophrynus americanus, Chromosoma 19: 188–193.PubMedCrossRefGoogle Scholar
  11. Becak, W., and Pueyo, M. T., 1970. Gene regulation in the polyploid amphibian Odontophrynus americanus, Exp. Cell Res. 63: 448–451.PubMedCrossRefGoogle Scholar
  12. Berg, W. J., and Ferris, S. D., 1984, Restriction endonuclease analysis of salmonid mitochondrial DNA, Can. J. Fish Aquat. Sci.Google Scholar
  13. Busslinger, M., Moschonas, N., and Flavell, R. A., 1981, Thalassemia: Aberrant splicing results from a single point mutation in an intron, Cell 27: 289–298.PubMedCrossRefGoogle Scholar
  14. Buth, D. G., 1977a, Biochemical identification of Moxostoma rhothoecum and M. hamiltoni, Biochem. Syst. Ecol. 5: 57–60.CrossRefGoogle Scholar
  15. Buth, D. G., 1977b, Alcohol dehydrogenase variability in Hypentelium nigricans, Biochem. Syst. Ecol. 5: 61–63.CrossRefGoogle Scholar
  16. Buth, D. G., 1978, Biochemical systematics of the Moxostomatini (Cypriniformes, Catostomidae), Ph.D. dissertation, University of Illinois, Urbana.Google Scholar
  17. Buth, D. G., 1979a, Creatine kinase variability in Moxostoma macrolepidotum (Cypriniformes, Catostomidae), Copeia 1979: 152–154.CrossRefGoogle Scholar
  18. Buth, D. G., 1979b, Duplicate gene expression in tetraploid fishes of the tribe Moxostomatini (Cypriniformes, Catostomidae), Comp. Biochem. Physiol. 63B: 7–12.CrossRefGoogle Scholar
  19. Buth, D. G., 1979c, Genetic relationships among the torrent suckers, genus Thoburnia, Biochem. Syst. Ecol. 7: 311–316.CrossRefGoogle Scholar
  20. Buth, D. G., 1980, Evolutionary genetics and systematic relationships in the catostomid genus Hypentelium, Copeia 1980: 280–290.CrossRefGoogle Scholar
  21. Buth, D. G., 1982, Glucosephosphate-isomerase expression in the tetraploid fish, Moxostoma lachneri (Cypriniformes, Catostomidae): Evidence for a “retetraploidization”? Genetica 57: 171–175.CrossRefGoogle Scholar
  22. Buth, D. G., and Crabtree, C. B., 1982, Genetic variability and population structure of Catostomus santaanae in the Santa Clara drainage, Copeia 1982: 439–444.CrossRefGoogle Scholar
  23. Champion, M. J., Shaklee, J. B., and Whitt, G. S., 1974, Developmental genetics of teleosts: A biochemical analysis of lake chubsucker ontogeny, Dev. Biol. 38: 356–382.PubMedCrossRefGoogle Scholar
  24. Comings, D. E., and Berger, R. O., 1969, Gene products of Amphiuma: An amphibian with an excessive amount of DNA, Biochem. Genet. 2: 319–333.PubMedCrossRefGoogle Scholar
  25. Crabtree, C. B., and Buth, D. G., 1981, Gene duplication and diploidization in tetraploid catostomid fishes Catostomus fumeiventris and C. santaanae, Copeia 1981: 705–708.CrossRefGoogle Scholar
  26. Danzmann, R. G., and Down, N. E., 1982, Isozyme expression in F, hybrids between carp and goldfish, Biochem. Genet. 20: 1–15.PubMedCrossRefGoogle Scholar
  27. Dauble, D. D., and Buschbom, R. L., 1981, Estimates of hybridization between two species of catostomids in the Columbia River, Copeia 1981: 802–810.CrossRefGoogle Scholar
  28. Dice, F. J., and Goldberg, A. L., 1975, Relationships between in vivo degradative rates and isoelectric points of proteins, Proc. Natl. Acad. Sci. USA 72: 3893–3897.PubMedCrossRefGoogle Scholar
  29. Dickerson, R. E., and Geis, I., 1969, The Structure and Action of Proteins, Benjamin, Menlo Park, California.Google Scholar
  30. DiMichele, L., and Powers, D. A., 1982, LDH-B genotype-specific hatching times of Fundulus heteroclitus embryos, Nature 296: 563–564.PubMedCrossRefGoogle Scholar
  31. Dingerkus, G., and Howell, W. M., 1976, Karyotypic analysis and evidence of tetraploidy in North American paddlefish, Polyodon spathula, Science 194: 842–844.PubMedCrossRefGoogle Scholar
  32. Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm, and genome evolution, Nature 284: 601–603.PubMedCrossRefGoogle Scholar
  33. Engel, W., Schmidtke, J., Vogel, W., and Wolf, U., 1973, Genetic polymorphism of lactate dehydrogenase isoenzymes in the carp, Cyprinus carpio, apparently due to a “null allele,” Biochem. Genet. 8: 281–289.PubMedCrossRefGoogle Scholar
  34. Engel, W., Schmidtke, J., and Wolf, U., 1975, Diploid—tetraploid relationships in teleostean fishes in: Isozymes IV: Genetics and Evolution (C. L. Markert, ed.), Academic Press, New York, pp. 449–462.Google Scholar
  35. Eventhoff, W., and Rossman, M. G., 1975, The evolution of the dehydrogenases and kinases, CRC Crit. Rev. Biochem. 3: 111–140.CrossRefGoogle Scholar
  36. Ferris, S. D., 1978. Evolution of duplicate gene expression after polyploidization, Ph.D. dissertation, University of Illinois, Urbana.Google Scholar
  37. Ferris, S. D., and Whitt, G. S., 1977a, Duplicate gene expression in diploid and tetraploid loaches (Cypriniformes, Cobitidae), Biochem Genet. 15: 1097–1111.PubMedCrossRefGoogle Scholar
  38. Ferris, S. D., and Whitt, G. S., 1977b, Loss of duplicate gene expression after polyploidisation, Nature 265: 258–260.PubMedCrossRefGoogle Scholar
  39. Ferris, S. D., and Whitt, G. S., 1977c, The evolution of duplicate gene expression in the carp (Cyprinus carpio), Experientia 33: 1299–1301.CrossRefGoogle Scholar
  40. Ferris, S. D., and Whitt, G. S., 1978a, Phylogeny of the tetraploid catostomid fishes based on the loss of duplicate gene expression, Syst. Zool. 27: 189–206.CrossRefGoogle Scholar
  41. Ferris, S. D., and Whitt, G. S., 1978b, Genetic and molecular analysis of the nonrandom dimer assembly of the creatine kinase isozymes of fishes, Biochem. Genet. 16: 811–829.PubMedCrossRefGoogle Scholar
  42. Ferris, S. D., and Whitt, G. S., 1979. Evolution of the differential regulation of duplicate genes after polyploidization, J. Mol. Evol. 12: 267–317.PubMedCrossRefGoogle Scholar
  43. Ferris, S. D., and Whitt, G. S., 1980, Genetic variability in species with extensive gene duplication: The tetraploid catostomid fishes, Am. Nat. 115: 650–666.CrossRefGoogle Scholar
  44. Ferris, S. D., Portnoy, S., and Whitt, G. S., 1979, The roles of speciation and divergence times in the loss of duplicate gene expression, Theor. Popul. Biol. 15: 114–139.CrossRefGoogle Scholar
  45. Ferris, S. D., Wilson, A. C., and Brown, W. M., 1981a, Evolutionary tree for humans and apes based on cleavage maps of mitochondrial DNA, Proc. Natl. Acad. Sci. USA 78: 2432–2436.PubMedCrossRefGoogle Scholar
  46. Ferris, S. D., Brown, W. M., Davidson, W. S., and Wilson, A. C., 1981b, Extensive polymorphism in the mitochondrial DNA of apes, Proc. Natl. Acad. Sci. USA 78: 6319–6323.PubMedCrossRefGoogle Scholar
  47. Ferris, S. D., Buth, D. G., and Whitt, G. S., 1982, Substantial genetic differentiation in populations of Catostomus plebeius, Copeia 1982: 444–449.CrossRefGoogle Scholar
  48. Fisher, S. E., and Whitt, G. S., 1978, Evolution of isozyme loci and their differential tissue expression: Creatine kinase as a model system, J. Mol. Evol. 12: 25–55.PubMedCrossRefGoogle Scholar
  49. Fisher, S. E., Shaklee, J. B., Ferris, S. D., and Whitt, G. S., 1980, Evolution of five multilocus isozyme systems in the chordates, Genetica 52 /53: 73–85.Google Scholar
  50. Gosselin-Ray, C., and Gerday, C., 1970, Isolation and molecular properties of creatine kinase from carp white muscle, Biochim. Biophys. Acta 221: 241–254.Google Scholar
  51. Haber, E. J., and Rogers, T. D., 1982, Transposition of a tandem duplication of yeast mating type genes, Nature 296: 768–770.PubMedCrossRefGoogle Scholar
  52. Hinegardner, R., 1976, Evolution of genome size, in: Molecular Evolution ( F. J. Ayala, ed.), Sinauer, Sunderland, Massachusetts, pp. 179–199.Google Scholar
  53. Hubbs, C. L., 1955, Hybridization between fish species in nature, Syst. Zool. 4: 1–20.CrossRefGoogle Scholar
  54. Hubbs, C. L., Hubbs, L. C., and Johnson, R. E., 1943, Hybridization in nature between species of catostomid fishes, Contrib. Lab. Vertebr. Biol. Univ. Mich. 1943 (22): 1–76.Google Scholar
  55. Huntsman, G. R., 1970, Disc electrophoresis of blood sera and muscle extracts from some catostomid fishes, Copeia 1970: 457–467.CrossRefGoogle Scholar
  56. Jeffreys, A. J., 1981, Recent studies of gene evolution using recombinant DNA technology. in: Genetic Engineering 2, ( R. Williamson, ed.), Academic Press, New York, pp. 1–48.Google Scholar
  57. Jeffreys, A. J., Wilson, V., Wood, D., and Simons, J. P., 1980, Linkage of adult a-and ß-globin genes in X. laevis and gene duplication by tetraploidization, Cell 21: 555–564.PubMedCrossRefGoogle Scholar
  58. Jenkins, R. E., 1970, Systematic studies of the catostomid fish tribe Moxostomatini, Ph.D. dissertation, Cornell University, Ithaca, New York.Google Scholar
  59. Johnson, G. B., 1974, Enzyme polymorphism and metabolism, Science 184: 28–37.PubMedCrossRefGoogle Scholar
  60. Klebe, R. J., 1975, A simple method for the quantitation of isozyme patterns, Biochem. Genet. 13: 805–812.PubMedCrossRefGoogle Scholar
  61. Kobayasi, H., Kawashima, Y., and Takeuchi, N., 1970. Comparative chromosome studies in the genus Carassius, especially with a finding of polyploidy in the ginbuna (C. auratus langsdorfi), Jpn. J. Ichthyol. 17: 153–160.Google Scholar
  62. Koch, A. L., 1972, Enzyme evolution: I. The importance of untranslatable intermediates, Genetics 72: 297–316.PubMedGoogle Scholar
  63. Koehn, R. K., 1966, Serum haptoglobins in some North American catostomid fishes, Comp. Biochem. Physiol. 17: 349–352.PubMedCrossRefGoogle Scholar
  64. Koehn, R. K., 1969a, Esterase heterogeneity: Dynamics of a polymorphism, Science 163: 943–944.PubMedCrossRefGoogle Scholar
  65. Koehn, R. K., 1969b, Hemoglobins of fishes of the genus Catostomus from western North America, Copeia 1969: 21–30.CrossRefGoogle Scholar
  66. Koehn, R. K., and Johnson, D. W., 1967, Serum transferrin and serum esterase polymorphisms in an introduced population of bigmouth buffalofish, Ictiobus cyprinellus, Copeia 1967: 805–808.CrossRefGoogle Scholar
  67. Koehn, R. K., and Rasmussen, D. I., 1967, Polymorphic and monomorphic serum esterases in catostomid fish populations, Biochem Genet. 1: 131–134.PubMedCrossRefGoogle Scholar
  68. Kucherlapati, R. S., Cregan, R. P., and Ruddle, F. H., 1974, Progress in human gene mapping by somatic cell hybridization, in: The Cell Nucleus ( H. Busch, ed.), Academic Press, New York, pp. 209–222.Google Scholar
  69. Leuders, K., Leder, A., Leder, P., and Kuff, E., 1982. Association between a transposed a-globin pseudogene and retrovirus-like elements in the BALB/c mouse genome, Nature 295: 426–428.CrossRefGoogle Scholar
  70. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  71. Li, W.-H., 1980, Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes, Genetics 95: 237–258.PubMedGoogle Scholar
  72. Li, W.-H, Gojobori, T., and Nei, M., 1981, Pseudogenes as a paradigm of neutral evolution, Nature 292: 237–239.PubMedCrossRefGoogle Scholar
  73. Lim, S. T., and Bailey, G. S., 1977, Gene duplication in salmonid fishes: Evidence for duplicated but catalytically equivalent A4 lactate dehydrogenase, Biochem. Genet. 15: 707–721.PubMedCrossRefGoogle Scholar
  74. Lim, S. T., Kay, R. M., and Bailey, G. S., 1975, Lactate dehydrogenase isozymes of salmonid fish. Evidence for unique and rapid functional divergence of duplicated H4 lactate dehydrogenases, J. Biol. Chem. 250: 1790–1800.PubMedGoogle Scholar
  75. Lucchesi, J. C., and Rawls, J. M., Jr., 1973, Regulation of gene function: A comparison of enzyme activity levels in relation to gene dosage in diploids and triploids of Drosophila melanogastor, Biochem. Genet. 9: 41–51.PubMedCrossRefGoogle Scholar
  76. Martin, S. L., Zimmer, E. A., Kan, Y. W., and Wilson, A. C., 1980, Silenced a-globin gene in Old World monkeys, Proc. Natl. Acad. Sci. USA 77: 3563–3566.PubMedCrossRefGoogle Scholar
  77. Makino, S., 1939, The chromosomes of the carp, Cyprinus carpio, including those of some related species of Cyprinidae for comparison, Cytologia 9: 430–440.CrossRefGoogle Scholar
  78. Markert, C. L., and Ursprung, H., 1971, Developmental Genetics, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  79. Markert, C. L., Shaklee, J. B., and Whitt, G. S., 1975, Evolution of a gene, Science 189: 102–114.PubMedCrossRefGoogle Scholar
  80. Maruyama, T., and Takahata, N., 1981, Numerical studies of the frequency trajectory in the process of fixation of null genes at duplicated loci, Heredity 44: 49–57.CrossRefGoogle Scholar
  81. Miller, R. R., 1959, Origin and affinities of the freshwater fish fauna of Western North America, in: Zoogeography, American Association for the Advancement of Science, Washington, D. C., pp. 187–222.Google Scholar
  82. Muramoto, J. C., Ohno, S., and Atkin, N. B., 1967, On the diploid state of the order Ostariophysi, Chromosoma 24: 59–66.CrossRefGoogle Scholar
  83. Nadal-Ginard, B., 1978, Regulation of lactate dehydrogenase levels in the mouse, J. Biol. Chem. 253: 170–177.PubMedGoogle Scholar
  84. Nei, M., Genetic distance between populations, Am. Nat. 106: 283–292.Google Scholar
  85. Nelson, E. M., 1948, The comparative morphology of the Weberian apparatus of the Catostomidae and its significance in systematics, J. Morphol. 83: 225–251.PubMedCrossRefGoogle Scholar
  86. Nikolsky, G., 1976, The interrelation between variability of characters, effectiveness of energy utilization, and karyotypic structure in fishes, Evolution 30: 180–185.CrossRefGoogle Scholar
  87. Ohno, S., 1970, Evolution by Gene Duplication, Springer-Verlag, New York.Google Scholar
  88. Ohno, S., 1974, Animal Cytogenetics: Protochordata, Cyclostomata, and Pisces, Vol. 4, Chordata I (B. John, ed. ), Gebrüder-Bornträger, Berlin.Google Scholar
  89. Ohno, S., 1974, Animal Cytogenetics: Protochordata, Cyclostomata, and Pisces, Vol. 4, Chordata I (B. John, ed. ), Gebrüder-Bornträger, Berlin.Google Scholar
  90. Ottolenghi, S., Giglioni, B., Taramelli, R., Comi, P., Mazza, U., Saglio, G., Camaschella, C., Izzo, P., Cao, A., Galanello, R., Gimferrer, E., Baiget, M., and Gianni, A. M., 1982, Molecular comparison of Sp-thalassemia and hereditary persistence of fetal hemoglobin DNA: Evidence of a regulatory area? Proc. Natl. Acad. Sci. USA 79: 2347–2351.PubMedCrossRefGoogle Scholar
  91. Pesce, A., Fondy, T. P., Stolzenbach, F., Castillo, F., and Kaplan, N. O., 1967, The comparative enzymology of lactate dehydrogenase, J. Biol Chem. 242: 2151–2167.PubMedGoogle Scholar
  92. Powell, R. J., 1975, Protein variation in natural populations of animals, Evol. Biol. 8: 79–119.Google Scholar
  93. Powers, D. A., and Edmundson, A. B., 1972, Multiple hemoglobins from catostomid fish I. Isolation and characterization of the isohemoglobins from Catostomus clarkii, J. Biol. Chem. 247: 6686–6693.PubMedGoogle Scholar
  94. Ramaswami, L. S., 1957, Skeleton of Cyprinoid fishes in relation to phylogenetic studies. 8. The skull and Weberian ossicles of Catostomidae, in: H. Mookerjee Memorial Volume, Proceedings of the Zoological Society of Calcutta (J. L. Bhaduri, B. Biswas, and S. P. Ray-Chaudhury, eds. ), pp. 293–303.Google Scholar
  95. Sage, R. D., and Selander, R. K., 1979, Hybridization between species of the Rana pipiens complex in central Texas, Evolution 33: 1069–1088.CrossRefGoogle Scholar
  96. Sarich, V. M., 1977, Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies, Nature 265: 24–28.PubMedCrossRefGoogle Scholar
  97. Schmidtke, J., and Engel, W., 1976, Gene action in fish of tetraploid origin III. Ribosomal DNA amount in cyprinid fish, Biochem. Genet. 14: 19–26.PubMedCrossRefGoogle Scholar
  98. Schmidtke, J., Schulte, B., Kuhl, P., and Engel, W., 1976, Gene action in fish of tetraploid origin. V. Cellular RNA and protein content and enzyme activities in cyprinid, clupeoid, and salmonoid species, Biochem. Genet. 14: 975–980.PubMedCrossRefGoogle Scholar
  99. Schultz, J. R., 1969, Hybridization, unisexuality, and polyploidy in the teleost poeciliopsis (Poeciliidae) and other vertebrates, Am. Nat. 103: 605–619.CrossRefGoogle Scholar
  100. Schwartz, M., and Sofer, W., 1976, Alcohol dehydrogenase-negative mutants in Drosophila: Defects at the structural locus? Genetics 83: 125–136.PubMedGoogle Scholar
  101. Shaw, C. R., and Prasad, R., 1970, Starch gel electrophoresis of enzymes—A compilation of recipes, Biochem. Genet. 4: 297–320.PubMedCrossRefGoogle Scholar
  102. Shaklee, J. B., and Whitt, G. S., 1981, Lactate dehydrogenase isozymes of Gadiform fishes: Divergent patterns of gene expression indicate a heterogeneous taxon, Copeia 1981: 563–578.CrossRefGoogle Scholar
  103. Shows, T. B., Massaro, E. J., and Ruddle, F. H., 1969, Evolutionary evidence for a regulator gene controlling the LDH-B gene in rodent erythrocytes, Biochem. Genet. 3: 525–536.PubMedCrossRefGoogle Scholar
  104. Smith, G. R., and Koehn, R. K., 1971, Phenetic and cladistic studies of biochemical and morphological characteristics of Catostomus, Syst. Zool. 20: 282–297.CrossRefGoogle Scholar
  105. Spofford, J. B., 1969, Heterosis and the evolution of duplications, Am. Nat. 103: 407–432.CrossRefGoogle Scholar
  106. Stebbins, G. L., 1971, Chromosomal Evolution in Higher Plants, Columbia University Press, New York.Google Scholar
  107. Stoneking, M., May, B., and Wright, J. E., 1981, Loss of duplicate gene expression in salmonids: Evidence for a null allele polymorphism at the duplicate aspartate amino transferase loci in brook trout (Salvelinus fontinalis), Biochem. Genet. 19: 1063–1077.PubMedCrossRefGoogle Scholar
  108. Takahata, N., and Maruyama, T., 1979, Polymorphism and loss of duplicate gene expression: A theoretical study with application to tetraploid fish, Proc. Natl. Acad. Sci. USA 76: 4521–4525.PubMedCrossRefGoogle Scholar
  109. Tsuyuki, H., Roberts, E., Kerr, R. H., Uthe, J. F., and Clarke, L. W., 1967, Comparative electropherograms in the family Catostomidae, J. Fish, Res. Board Can. 24: 299–304.CrossRefGoogle Scholar
  110. Utter, F. M., Allendorf, F. W., and May, B., 1979, Genetic basis of creatine kinase isozymes in skeletal muscle of salmonid fishes, Biochem. Genet. 17: 1079–1091.PubMedCrossRefGoogle Scholar
  111. Uyeno, T., and Smith, G. R. 1972, Tetraploid origin of the karyotype of catostomid fishes, Science 175: 644–646.PubMedCrossRefGoogle Scholar
  112. Wheat, T. E., Whitt, G. S., and Childers, W. F., 1973, Linkage relationships of six enzyme loci in interspecific sunfish hybrids (genus Lepomis), Genetics 74: 343–350.PubMedGoogle Scholar
  113. Whitt, G. S., 1981a, Developmental genetics of fishes: lsozymic analysis of differential gene expression, Am. Zool. 21: 549–572.Google Scholar
  114. Whitt, G. S., 1981b, Evolution of isozyme loci and their differential regulation, in: Evolution Today ( G. G. Scudder and J. L. Reveal, eds), University of British Colombia, Vancouver, pp. 271–289.Google Scholar
  115. Whitt, G. S., Childers, W. F., Shaklee, J. B., and Matsumoto, J., 1976, Linkage analysis of the multilocus glucosephosphate isomerase isozyme system in sunfish (Centrarchidae, Teleostii), Genetics 82: 35–42.PubMedGoogle Scholar
  116. Whitt, G. S., Phillip, D. P., and Childers, W. F., 1977, Aberrant gene expression during development of hybrid sunfishes (Perciformes, Teleosti), Differentiation 9: 97–109.PubMedCrossRefGoogle Scholar
  117. Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem 46: 573–639.PubMedCrossRefGoogle Scholar
  118. Wolf, U., Ritter, H., Atkin, N. B., and, Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. 1. DNA content and chromosome sets in various species of Cyprinidae, Humangenetik 7: 240–244.Google Scholar
  119. Wright, J. E., May, B., Stoneking, M., and Lee, G. M., 1980, Pseudolinkage for the duplicate supernatant aspartate aminotransferase in brook trout (Salvelinus fontinalis), J. Hered. 71: 223–228.PubMedGoogle Scholar
  120. Zimmer, E. A., Martin, S. L., Beverly, S. M., Kan, Y. W., and Wilson, A. C., 1980, Rapid duplication and loss of genes coding for the a chains of hemoglobins, Proc. Natl. Acad. Sci. USA 77: 2158–2162.PubMedCrossRefGoogle Scholar
  121. Zuckerkandl, E., 1978, Multilocus isozyme systems, gene regulation, and genetic sufficiency, J. Mol. Evol. 12: 57–89.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Stephen D. Ferris
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations