Allozymes of the Cyprinid Fishes

Variation and Application
  • Donald G. Buth
Part of the Monographs in Evolutionary Biology book series (MEBI)


The cyprinid fishes comprise a major element of the ichthyofauna of Africa, Asia, Europe, and North America. More than 1600 species in over 275 genera make the Cyprinidae the most speciose of fish families (Nelson, 1976). Cyprinid fishes have been the subject of several allozyme studies. However, given the number of species in the family, cyprinids have been underrepresented in such studies to date. Nevertheless, cyprinids have contributed to our understanding of genetic variation in natural populations and a variety of evolutionary processes. Studies of heterozygosity, population differentiation, hybridization including introgression, and rates of evolution have been addressed using cyprinids and are discussed in this chapter.


Introgressive Hybridization Purine Nucleoside Phosphorylase Cyprinid Fish Allozyme Data Cyprinid Species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F. W., and Utter, F. M., 1978, Population genetics, in: Fish Physiology, Vol. 8: Bioenergetics and Growth (W. S. Hoar and D. J. Randall, eds.), Academic Press, New York, pp. 407–454.Google Scholar
  2. Aquadro, C. F., and Avise, J. C., 1982, Evolutionary genetics of birds. VI. A reexamination of protein divergence using varied electrophoretic conditions, Evolution 36: 1003–1019.CrossRefGoogle Scholar
  3. Avise, J. C., 1974, Systematic value of electrophoretic data, Syst. Zool. 23: 465–481.CrossRefGoogle Scholar
  4. Avise, J. C., 1977a, Genic heterozygosity and rate of speciation, Paleobiology 3: 422–432.Google Scholar
  5. Avise, J. C., 1977b, Is evolution gradual or rectangular? Evidence from living fishes, Proc. Natl. Acad. Sci. USA 74: 5083–5087.PubMedCrossRefGoogle Scholar
  6. Avise, J. C., and Ayala, F. J., 1976, Genetic differentiation in speciose versus depauperate phylads: Evidence from the California minnows, Evolution 30: 46–58.CrossRefGoogle Scholar
  7. Avise, J. C., Smith, J. J., and Ayala, F. J., 1975, Adaptive differentiation with little genic change between two native California minnows, Evolution 29: 411–426.CrossRefGoogle Scholar
  8. Bender, K., and Ohno, S., 1968, Duplication of the autosomally inherited 6-phosphogluconate dehydrogenase gene locus in tetraploid species of cyprinid fish, Biochem. Genet. 2: 101–107.PubMedCrossRefGoogle Scholar
  9. Berberovic, L., Hadziselimovic, R., Pavlovic, B., and Sofradzija, A., 1973, Chromosome set of the species Aulopyge hugeli Heckel 1841, Bull. Sci. Acad. RSF Yougosl. 18: 10–11.Google Scholar
  10. Brewer, G. J., 1970, An Introduction to Isozyme Techniques, Academic Press, New York.Google Scholar
  11. Burr, B. M., and Smith, P. W., 1976, Status of the largescale stoneroller, Campostoma oligolepis, Copeia 1976:521–531.Google Scholar
  12. Buth, D. G., 1979a, Biochemical systematics of the cyprinid genus Notropis, I. The subgenus Luxilus, Biochem. Syst. Ecol. 7: 69–79.CrossRefGoogle Scholar
  13. Buth, D. G., 1979b, Duplicate gene expression in tetraploid fishes of the tribe Moxostomatini (Cypriniformes, Catostomidae), Comp. Biochem. Physiol. 63B: 7–12.CrossRefGoogle Scholar
  14. Buth, D. G., 1980, Evolutionary genetics and systematic relationships in the catostomid genus Hypentelium, Copeia 1980:280–290.Google Scholar
  15. Buth, D. G., 1981, Cladistic treatment of isozyme (rather than allozyme) data, Presentation at the 2nd Annual Willi Hennig Society Meeting, Ann Arbor, Michigan.Google Scholar
  16. Buth, D. G., 1983, Duplicate isozyme loci in fishes: Origins, distribution, phyletic consequences and locus nomenclature, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 10 ( M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), Alan R. Liss, New York, pp. 381–400.Google Scholar
  17. Buth, D. G., and Burr, B. M., 1978, lsozyme variability in the cyprinid genus Campostoma, Copeia 1978:298–311.Google Scholar
  18. Buth, D. G., and Crabtree, C. B., 1982, Genetic variability and population structure of Catostomus santaanae in the Santa Clara drainage, Copeia 1982: 439–444.CrossRefGoogle Scholar
  19. Buth, D. G., and Mayden, R. L., 1981, Taxonomic status and relationships among populations of Notropis pilsbryi and N. zonatus (Cypriniformes: Cyprinidae) as shown by the glucosephosphate isomerase, lactate dehydrogenase and phosphoglucomutase enzyme systems, Copeia 1981: 583–590.CrossRefGoogle Scholar
  20. Cataudella, S., Sola, L., Muratori, R. A., and Capanna, E., 1977, The chromosomes of eleven species of Cyprinidae and one Cobitidae from Italy, with some remarks on the problem of polyploidy in the Cypriniformes, Genetica 47: 161–171.CrossRefGoogle Scholar
  21. Chiarelli, A. B., and Capanna, E., 1973, Checklist of fish chromosomes, in: Cytotaxonomy and Vertebrate Evolution ( A. B. Chiarelli and E. Capanna, eds.), Academic Press, New York, pp. 206–232.Google Scholar
  22. Clayton, J. W., and Gee, J. H., 1969, Lactate dehydrogenase isozymes in Iongnose and blacknose dace (Rhinichthys cataractae and R. atratulus) and their hybrid, J. Fish. Res. Board Can. 26: 3049–3053.CrossRefGoogle Scholar
  23. Clayton, J. W., and Tretiak, D. N., 1972, Amine-citrate buffers for pH control in starch gel electrophoresis, J. Fish. Res. Board Can. 29: 1169–1172.CrossRefGoogle Scholar
  24. Colless, D. H., 1980, Congruence between morphometric and allozyme data for Menidia species: A reappraisal, Syst. Zool. 29: 288–299.CrossRefGoogle Scholar
  25. Crabtree, C. B., and Buth, D. G., 1981, Gene duplication and diploidization in tetraploid catostomid fishes Catostomus fumeiventris and C. santaanae, Copeia 1981: 705–708.CrossRefGoogle Scholar
  26. Dowling, T., and Moore, W. S., 1984, The level of reproductive isolation between two cyprinid fishes, Notropis cornutus (Mitchill) and N. chrysocephalus (Rafinesque), Cop-eia (in press).Google Scholar
  27. Engel, J., Faust, J., and Wolf, U., 1971, Isoenzyme polymorphism of the sorbitol dehydrogenase and the NADP-dependent isocitrate dehydrogenases in the fish family Cyprinidae, Anim. Blood Groups Biochem. Genet. 2: 127–133.CrossRefGoogle Scholar
  28. English, P. J., 1980, Immunological affinities within a genus of cyprinid fishes (Semotilus: Cyprinidae), M. S. dissertation, Wayne State University.Google Scholar
  29. Farris, J. S., 1981, Distance data in phylogenetic analysis, in: Advances in Cladistics (V. A. Funk and D. R. Brooks, eds.), The New York Botanical Garden, Bronx, New York, pp. 3–23.Google Scholar
  30. Ferguson, M. M., 1981, Identification and species characterization of some North American minnows by electrophoresis, Biochem. Syst. Ecol. 9: 89–91.CrossRefGoogle Scholar
  31. Ferguson, M. M., Noakes, D. L., and Danzmann, R. G., 1981, Morphological and biochemical systematics of chubs, Nocomis biguttatus and N. micropogon (Pisces: Cyprinidae), in southern Ontario, Can. J. Zool. 59: 771–775.CrossRefGoogle Scholar
  32. Ferris, S. D., and Whitt, G. S., 1977a, The evolution of duplicate gene expression in the carp (Cyprinus carpio), Experientia 33: 1299–1301.CrossRefGoogle Scholar
  33. Ferris, S. D., and Whitt, G. S., 1977b, Loss of duplicate gene expression after polyploidisation, Nature 265: 258–260.PubMedCrossRefGoogle Scholar
  34. Ferris, S. D., and Whitt, G. S., 1978, Phylogeny of tetraploid catostomid fishes based on the loss of duplicate gene expression, Syst. Zool. 27: 189–206.CrossRefGoogle Scholar
  35. Gilbert, C. R., 1964, The American cyprinid fishes of the subgenus Luxilus (genus Notropis), Bull. Fla. State Mus. 8: 95–194.Google Scholar
  36. Gold, J. R., 1980, Chromosomal change and rectangular evolution in North American cyprinid fishes, Genet. Res. Camb. 35: 157–164.CrossRefGoogle Scholar
  37. Gold, J. R., Karel, W. J., and Strand, M. R., 1979a, Chromosome formulae of North American Fishes, The Texas Agricultural Experiment Station, Texas A & M University, College Station, Texas.Google Scholar
  38. Gold, J. R., Whitlock, C. W., Karel, W. J., and Barlow, J. A., Jr., 1979b, Cytogenetic studies of North American minnows (Cyprinidae): VI. Karyotypes of thirteen species in the genus Notropis, Cytologica 44: 457–466.CrossRefGoogle Scholar
  39. Gold, J. R., Womac, W. D., Deal, F. H., and Barlow, J. A., Jr., 1981, Cytogenetic studies in North American minnows (Cyprinidae): VII. Karyotypes of thirteen species from the southern United States, Cytologia 46: 105–115.CrossRefGoogle Scholar
  40. Goodfellow, W. L., Jr., Morgan, R. P., II, Hocutt, C. H., and Stauffer, J. R., Jr., 1982, Electrophoretic analysis of Campostoma anomalum, Rhinichthys cataractae and their F, offspring, Biochem. Syst. Ecol. 10: 95–98.CrossRefGoogle Scholar
  41. Hubbs, C. L., 1955, Hybridization between fish species in nature, Syst. Zool. 4: 1–20.CrossRefGoogle Scholar
  42. International Union of Biochemistry, 1979, Enzyme Nomenclature, 1978, Academic Press, New York.Google Scholar
  43. Joswiak, G. R., 1980, Genetic divergence within a genus of cyprinid fish (Phoxinus: Cyprinidae), Ph. D. dissertation, Wayne State University.Google Scholar
  44. Joswiak, G. R., Starnes, W. C., and Moore, W. S., 1980, Karyotypes of three species of the genus Phoxinus (Pisces: Cyprinidae), Copeia 1980: 913–916.CrossRefGoogle Scholar
  45. Joswiak, G. R., Stasiak, R. H., and Moore, W. S., 1982, Allozyme analysis of the hybrid Phoxinus eos x Phoxinus neogaeus (Pisces: Cyprinidae) in Nebraska, Can. J. Zool. 60: 968–973.CrossRefGoogle Scholar
  46. Khuda-Bukhsh, A. R., 1980, A high number of chromosomes in the hillstream cyprinid, Tor putitora (Pisces), Experientia 36: 173–174.PubMedCrossRefGoogle Scholar
  47. Klose, J., Wolf, U., Hitzeroth, H., and Ritter, H., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. II. Duplication of the gene loci coding for lactate dehydrogenase (E.C.: and 6-phosphogluconate dehydrogenase (E.C.: in various species of Cyprinidae, Humangenetik 7: 245–250.PubMedCrossRefGoogle Scholar
  48. Koehn, R. K., Perez, J. E., and Merritt, R. B., 1971, Esterase enzyme function and genetical structure of populations of the freshwater fish, Notropis stramineus, Am. Nat. 105: 51–69.CrossRefGoogle Scholar
  49. Li, W.-H., 1980, Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes, Genetics 95: 237–258.PubMedGoogle Scholar
  50. Lin, C.-C., Schipmann, G., Kittrell, W. A., and Ohno, S., 1969, The predominance of heterozygotes found in wild goldfish of Lake Erie at the gene locus for sorbitol dehydrogenase, Biochem. Genet. 3: 603–607.PubMedCrossRefGoogle Scholar
  51. Lundberg, J. G., 1972, Wagner networks and ancestors, Syst. Zool. 21: 398–413.CrossRefGoogle Scholar
  52. Mayr, E., 1969, Principles of Systematic Zoology, McGraw-Hill, New York.Google Scholar
  53. McAllister, D. E., and Coad, B. W., 1978, A test between relationships based on phonetic and cladistic taxonomic methods, Can. J. Zool. 56: 2198–2210.CrossRefGoogle Scholar
  54. Menzel, B. W., 1976, Biochemical systematics and evolutionary genetics of the common shiner species group, Biochem. Syst. Ecol. 4: 281–293.CrossRefGoogle Scholar
  55. Menzel, B. W., 1977, Morphological and electrophoretic identification of a hybrid cyprinid fish, Notropis cerasinus x Notropis c. cornutus, with implications on the evolution of Notropis albeolus, Comp. Biochem. Physiol. 57B: 215–218.CrossRefGoogle Scholar
  56. Menzel, B. W., and Cross, F. B., 1977, Systematics of the bleeding shiner species group (Cyprinidae: genus Notropis, subgenus Luxilus), American Society of Ichthyologists and Herpetologists Meeting, Gainesville, Florida, Abstract 1977.Google Scholar
  57. Mickevich, M. F., 1982, Transformation series analysis, Syst. Zool. 31: 169–176.Google Scholar
  58. Mickevich, M. F., and Johnson, M. S., 1976, Congruence between morphological and allozyme data in evolutionary inference and character evolution, Syst. Zool. 25: 260–270.CrossRefGoogle Scholar
  59. Mickevich, M. F., and Mitter, C., 1981, Treating polymorphic characters in systematics: A phylogenetic treatment of electrophoretic data, in: Advances in Cladistics (V. A. Funk and D. R. Brooks, eds.), The New York Botanical Garden, Bronx, New York, pp. 45–58.Google Scholar
  60. Mickevich, M. F., and Mitter, C., 1983, Evolutionary patterns in allozyme data: A systematic approach, in: Advances in Cladistics II(N. I. Platnick and V. A. Funk, eds.), Columbia University Press, New York, pp. 169–176.Google Scholar
  61. Miller, R. J., 1968, Speciation in the common shiner: An alternate view, Copeia 1968: 640–647.CrossRefGoogle Scholar
  62. Nayyar, R. P., 1964, Karyotype studies in seven species of Cyprinidae, Genetica 35: 95–104.CrossRefGoogle Scholar
  63. Nei, M., 1972, Genetic distance between populations, Am. Nat. 106: 283–292.CrossRefGoogle Scholar
  64. Nei, M., 1978, Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics 89: 583–590.PubMedGoogle Scholar
  65. Nelson, J. S., 1976, Fishes of the World, Wiley, New York.Google Scholar
  66. Nygren, A., Andreasson, J., Jonsson, L., and Jahnke, G., 1975, Cytological studies in Cyprinidae (Pisces), Hereditas 81: 165–172.PubMedCrossRefGoogle Scholar
  67. Ohno, S., 1970, Evolution by Gene Duplication, Springer-Verlag, New York.Google Scholar
  68. Ohno, S., Muramoto, J., and Christian, L., 1967, Diploid—tetraploid relationship among Old-World members of the fish family Cyprinidae, Chromosoma 23: 1–9.CrossRefGoogle Scholar
  69. Ohno, S., Wolf, U., and Atkin, N. B., 1968, Evolution from fish to mammals by gene duplication, Hereditas 59: 169–187.PubMedCrossRefGoogle Scholar
  70. Ojima, Y., Hayashi, M., and Ueno, K., 1972, Cytogenetic studies in lower vertebrates. X. Karyotype and DNA studies in fifteen species of Japanese Cyprinidae, Jpn. J. Genet. 47: 431–440.CrossRefGoogle Scholar
  71. Op’t Hof, J., Wolf, U., and Krone, W., 1969, Studies on isozymes of sorbitol dehydrogenase in some vertebrate species, Humangenetik 8: 178–182.Google Scholar
  72. Park, E. H., 1974, A list of the chromosome numbers of fishes, College Rev. College Liberal Arts Sci. Seoul Nat. Univ. 20: 346–372.Google Scholar
  73. Piront, A., and Gosselin-Rey, C., 1974, Immunological cross-reactions among Cyprinidae parvalbumins, Biochem. Syst. Ecol. 2: 103–107.CrossRefGoogle Scholar
  74. Rainboth, W. J., and Whitt, G. S., 1974, Analysis of evolutionary relationships among shiners of the subgenus Luxilus (Teleostei, Cypriniformes, Notropis) with the lactate dehydrogenase and malate dehydrogenase isozyme systems, Comp. Biochem. Physiol. 49B: 241–252.CrossRefGoogle Scholar
  75. Rakocinski, C. F., 1980, Hybridization and introgression between Campostoma oligolepis and C. anomalum pullum (Cypriniformes: Cyprinidae), Copeia 1980: 584–594.CrossRefGoogle Scholar
  76. Riska, B., 1979, Character variability and evolutionary rate in Menidia, Evolution 33: 1001–1004.CrossRefGoogle Scholar
  77. Rogers, J. S., 1972, Measures of genetic similarity and genetic distance, University of Texas Publication 7213, pp. 145–153.Google Scholar
  78. Sackler, M. L., 1966, Xanthine oxidase from liver and duodenum of the rat: Histochemical localization and electrophoretic heterogeneity, J. Histochem. Cytochem. 14: 326–333.PubMedCrossRefGoogle Scholar
  79. Schmidtke, J., and Engel, W., 1974, On the problem of regional gene duplication in diploid fish of the orders Ostariophysi and Isospondyli, Humangenetik 21: 39–45.PubMedCrossRefGoogle Scholar
  80. Schmidtke, J., and Engel, W., 1976, Gene action in fish of tetraploid origin, III. Ribosomal DNA amount in cyprinid fish, Biochem. Genet. 14: 19–26.PubMedCrossRefGoogle Scholar
  81. Schmidtke, J., Schulte, B., Kuhl, P., and Engel, W., 1976, Gene action in fish of tetraploid origin. V. Cellular RNA and protein content and enzyme activities in cyprinid, clupeoid, and salmonoid species, Biochem. Genet. 14: 975–980.PubMedCrossRefGoogle Scholar
  82. Schwartz, F. J., 1972, World literature to fish hybrids, with an analysis by family, species, and hybrid, Gulf Coast Research Laboratory Museum, Ocean Springs, Mississippi, Publication No. 3.Google Scholar
  83. Selander, R. K., 1976, Genic variation in natural populations, in: Molecular Evolution ( F. J. Ayala, ed.), Sinauer, Sunderland, Massachusetts, pp. 21–45.Google Scholar
  84. Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B., 1971, IV. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus), in: Studies in Genetics VI, University of Texas Publication 7103, pp. 49–90.Google Scholar
  85. Sofradzija, A., and Berberovic, L., 1973, The chromosome number of Barbus meridionalis petenyi Heckel (Cyprinidae, Pisces), Bull. Sci. Acad. RSF Yougosl. 18: 77–78.Google Scholar
  86. Stevens, P. F., 1980, Evolutionary polarity of character states, Annu. Rev. Ecol. Syst. 11: 333–358.CrossRefGoogle Scholar
  87. Suzuki, A., and Taki, Y., 1981, Karyotype of tetraploid origin in a tropical Asian cyprinid, Acrossocheilus sumatranus, Jpn. J. Ichthyol. 28: 173–176.Google Scholar
  88. Swofford, D. L., 1981, On the utility of the distance Wagner procedure, in: Advances in Cladistics (V. A. Funk and D. R. Brooks, eds.), The New York Botanical Garden, Bronx, New York, pp. 25–43.Google Scholar
  89. Takahata, N., 1982, The disappearance of duplicate gene expression, in: Molecular Evolution, Protein Polymorphism and the Neutral Theory (M. Kimura, ed.), Japan Scientific Societies Press, Tokyo, pp. 169–190.Google Scholar
  90. Takahata, N., and Maruyama, T., 1979, Polymorphism and loss of duplicate gene expression: A theoretical study with application to tetraploid fish, Proc. Natl. Acad. Sci. USA 76: 4521–4525.PubMedCrossRefGoogle Scholar
  91. Taki, Y., and Suzuki, A., 1977, A comparative chromosome study of Puntius (Cyprinidae: Pisces). II, Proc. Jpn. Acad. 53: 282–286.CrossRefGoogle Scholar
  92. Taki, Y., Urushido, T., Suzuki, A., and Serizawa, C., 1977, A comparative chromosome study of Puntius (Cyprinidae: Pisces). I, Proc. Jpn. Acad. 53: 231–235.CrossRefGoogle Scholar
  93. Triantaphyllidis, C. D., Damianakis, H., Economidis, P. S., and Karakousis, J., 1981, Genetic variation in Greek barbel populations—I. Esterases, LDH, MDH, ME and PGM in Barbus meridionalis (Pisces, Cyprinidae), Comp. Biochem. Physiol. 70B: 278–293.Google Scholar
  94. Waines, J. G., 1976, A model for the origin of diploidizing mechanisms in polyploid species, Am. Nat. 110: 415–430.CrossRefGoogle Scholar
  95. Watrous, L. E., and Wheeler, Q. D., 1981, The out-group comparison method of character analysis, Syst. Zool. 30: 1–11.CrossRefGoogle Scholar
  96. White, M. J. D., 1978, Modes of Speciation, Freeman, San Francisco.Google Scholar
  97. Whitt, G. S., 1970, Developmental genetics of the lactate dehydrogenase isozymes of fish, J. Exp. Zool. 175: 1–36.PubMedCrossRefGoogle Scholar
  98. Wilson, F. R., Whitt, G. S., and Prosser, C. L., 1973, Lactate dehydrogenase and malate dehydrogenase isozyme patterns in tissues of temperature acclimated goldfish (Carassius auratus), Comp. Biochem. Physiol. 46B: 105–116.CrossRefGoogle Scholar
  99. Wolf, U., Ritter, H., Atkin, N., and Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes, I. DNA content and chromosome set in various species of Cyprinidae, Humangenetik 7: 240–244.PubMedCrossRefGoogle Scholar
  100. Wolf, U., Engel, W., and Faust, J., 1970, Zum mechanismus der diploidisierung in der wirbeltierevolution: Koexistenz von tetrasomen und disomen genloci der isocitrat-dehydrogenasen bei der regenbogenforelle (Salmo irideus), Humangenetik 9: 150–156.PubMedCrossRefGoogle Scholar
  101. Zimmerman, E. G., and Richmond, M. C., 1981, Increased heterozygosity at the MDH-B locus in fish inhabiting a rapidly fluctuating thermal environment, Trans. Am. Fish. Soc. 110: 410–416.CrossRefGoogle Scholar
  102. Zimmerman, E. G., Merritt, R. L., and Wooten, M. C., 1980, Genetic variation and ecology of stoneroller minnows, Biochem. Syst. Ecol. 8: 447–453.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Donald G. Buth
    • 1
  1. 1.Department of BiologyUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations