Tetraploidy and the Evolution of Salmonid Fishes

  • Fred W. Allendorf
  • Gary H. Thorgaard
Part of the Monographs in Evolutionary Biology book series (MEBI)


Polyploidy has long been recognized to have played an important role in the evolution of plant species (Lewis, 1980). However, polyploidy has only recently been recognized as a potentially important process in the evolution of vertebrates (Ohno, 1974; Fisher et al.,1980; Bogart, 1980; Schultz, 1980). Mammals and birds generally possess more DNA per cell than do fish and other chordates. This observation and the existence of many duplicated gene loci have led Ohno and co-workers (Ohno,1967, 1970a, 1974; Ohno et al., 1968) to propose that genome doubling has taken place at least once in the evolution of vertebrates. One tetraploid event apparently took place about 500 million years (Myr) ago in a common ancestor of all vertebrates. Fisher et al. (1980) describe isozyme studies that are consistent with this idea. Other tetraploid events may have taken place in major lineages of vertebrate evolution, possibly including a genome doubling in a reptilian ancestor of mammals (Ohno, 1967; Comings, 1972).


Rainbow Trout Atlantic Salmon Brown Trout Brook Trout Salmonid Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, S. K., and Stanley, J. G., 1978, Reproductive sterility in polyploid brook trout Salvelinus fontinalis, Trans. Am. Fish. Soc. 107: 474–478.CrossRefGoogle Scholar
  2. Allen, S. K., Jr., and Stanley, J. G., 1979, Polyploid mosaics induced by cytochalsin B in landlocked Atlantic salmon, Trans. Am. Fish. Soc. 108: 462–466.CrossRefGoogle Scholar
  3. Allendorf, F. W., 1975, Genetic variability in a species possessing extensive gene duplication: Genetic interpretation of duplicate loci and examination of genetic variation in populations of rainbow trout, Ph. D. dissertation, University of Washington, Seattle.Google Scholar
  4. Allendorf, F. W., 1978, Protein polymophism and the rate of loss of duplicate gene expression, Nature 272: 76–79.PubMedCrossRefGoogle Scholar
  5. Allendorf, F. W., 1980, Genetic control of tissue specific expression of a phosphoglucomutase locus in rainbow trout, Genetics 94: 51.Google Scholar
  6. Allendorf, F. W., Knudsen, K. L., and Phelps, S. R., 1982, Identification of a gene regulating the tissue expression of a phosphoglucomutase locus in rainbow trout, Genetics 102: 259–268.PubMedGoogle Scholar
  7. Allendorf, F. W., and Utter, F. M., 1976, Gene duplication in the family Salmonidae III. Linkage between two duplicated loci coding for aspartate aminotransferase in the cutthroat trout (Salmo clarki), Hereditas 82: 19–24.PubMedCrossRefGoogle Scholar
  8. Allendorf, F. W., and Utter, F. M., 1979, Population genetics, in: Fish Physiology, Vol. 8 ( W. S. Hoar, D. J. Randall, and J. R. Brett, eds.), Academic Press, New York, pp. 407–454.Google Scholar
  9. Allendorf, F. W., Utter, F. M., and May, B. P., 1975, Gene duplication within the family Salmonidae: Detection and determination of the genetic control of duplicate loci through inheritance studies and the examination of populations, in: Isozymes IV. Genetics and Evolution ( C. L. Market, ed.), Academic Press, New York, pp. 415–431.Google Scholar
  10. Astaurov, B. L., 1969, Experimental polyploidy in animals, Annu. Rev. Genet. 3: 99–126.CrossRefGoogle Scholar
  11. Bachmann, K., Goin, O. B., and Goin, C. J., 1972, Nuclear DNA amounts in vertebrates, in: Evolution of Genetic Systems ( H. H. Smith, ed.), Gordon and Breach, New York, pp. 419–447.Google Scholar
  12. Bailey, G. S., Wilson, A. C., Halver, J. E., and Johnson, C. L., 1970, Multiple forms of supernatant malate dehydrogenase in salmonid fishes, J. Biol. Chem. 245: 5927–5940.PubMedGoogle Scholar
  13. Bailey, G. S., Tsuyuki, H., and Wilson, A. C., 1976, The number of genes for lactate dehydrogenase in salmonid fishes, J. Fish. Res. Board Can. 33: 760–767.CrossRefGoogle Scholar
  14. Baker, B. S., Carpenter, A. T. C., Esposito, M. S., Esposito, R. E., and Sandler, L., 1976, The genetic control of meiosis, Annu. Rev. Genet. 10: 53–134.PubMedCrossRefGoogle Scholar
  15. Beamish, R. J., and Tsuyuki, H., 1971, A biochemical and cytological study of the longnose sucker (Catostomus catostomus) and large and dwarf forms of the white sucker (Catostomus commersoni), J. Fish. Res. Board Can. 28: 1745–1748.CrossRefGoogle Scholar
  16. Beck, M. L., Biggers, C. J., and Dupree, H. K., 1980, Karyological analysis of Ctenopharyngodon idella, Aristichthys nobilis, and their F, hybrid, Trans. Am. Fish. Soc. 109: 433–438.CrossRefGoogle Scholar
  17. Behnke, R. J., 1972, The systematics of salmonid fishes of recently glaciated lakes, J. Fish. Res. Board Can. 29: 639–671.CrossRefGoogle Scholar
  18. Bogart, J. P., 1980, Polyploidy in evolution of amphibians and reptiles, in: Polyploidy: Biological Relevance ( H. L. Lewis, ed.), Plenum Press, New York, pp. 341–369.Google Scholar
  19. Booke, H. E., 1968, Cytotaxomonic studies of the coregonine fishes of the Great Lakes, USA: DNA and karyotype analysis, J. Fish. Res. Board Can. 25: 1667–1687.CrossRefGoogle Scholar
  20. Bridges, W. R., and Von Limbach, B., 1972, Inheritance of albinism in rainbow trout, J. Hered. 63: 152–153.Google Scholar
  21. Burnham, C. R., 1962, Discussions in Cytogenetics, Burgess Publishing Co., Minneapolis, Minnesota.Google Scholar
  22. Capanna, E., Cataudella, S., and Volpe, R., 1974, An intergeneric hybrid between the rainbow trout and the freshwater char (Salmo gairdneri x Salvelinus fontinalis), Boll. Pesca Pisci. Idrobiol. 29: 101–106.Google Scholar
  23. Cavalier-Smith, T., 1978, Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox, J. Cell Sci. 34: 247–278.PubMedGoogle Scholar
  24. Cavender, T. M., 1970, A comparison of Coregonines and other Salmonids with the earliest known teleostean fishes, in: Biology of Coregonid Fishes ( C. C. Lindsey and C. S. Woods, eds.), University of Manitoba Press, Winnipeg, Manitoba, pp. 1–30.Google Scholar
  25. Cherfas, N. B., 1966, Natural triploidy in females of the unisexual form of silver carp (goldfish) (Carassius auratus gibelio Block), Genetika 2: 16–24.Google Scholar
  26. Chourrout, D., 1980, Thermal induction of diploid gynogenesis and triploidy in the eggs of the rainbow trout (Salmo gairdneri Richardson), Reprod. Nutr. Dev. 20: 727–733.PubMedCrossRefGoogle Scholar
  27. Christiansen, F. B., and Frydenberg, O., 1977, Selection—mutation balance for two nonallelic recessives producing an inferior double homozygote, Am. J. Hum. Genet. 29: 195–207.PubMedGoogle Scholar
  28. Clayton, J. W., and Franzin, W. G., 1970, Genetics of multiple lactate dehydrogenase isozymes in muscle tissue of lake whitefish (Coregonus clupeaformis), J. Fish. Res. Board Can. 27: 1115–1121.CrossRefGoogle Scholar
  29. Comings, D. E., 1972, Evidence for ancient tetraploidy and conservation of linkage groups in mammalian chromosomes, Nature 238: 455–457.PubMedCrossRefGoogle Scholar
  30. Cuellar, O., and Uyeno, T., 1972, Triploidy in rainbow trout, Cytogenetics 11: 508–515.PubMedCrossRefGoogle Scholar
  31. Danzmann, R. G., and Bogart, J. P. 1982, Evidence for a polymorphism in gametic segregation using a malate dehydrogenase locus in the tetraploid treefrog Hyla versicolor, Genetics 100: 287–306.PubMedGoogle Scholar
  32. Davisson, M. T., Wright, J. E., and Atherton, L. M., 1972, Centric fusion and trisomy for the LDH-B locus in brook trout, Salvelinus fontinalis, Science 178: 992–994.PubMedCrossRefGoogle Scholar
  33. Davisson, M. T., Wright, J. E., and Atherton, L. M., 1973, Cytogenetic analysis of pseudolinkage of LDH loci in the teleost genus Salvelinus, Genetics 73: 645–658.PubMedGoogle Scholar
  34. Dingerkus, G., and Howell, W. M., 1976, Karyotypic analysis and evidence of tetraploidy in the North American paddlefish Polyodon spathula, Science 194: 842–844.PubMedCrossRefGoogle Scholar
  35. Dobzhansky, T., Ayala, F. J., Stebbins, G. L., and Valentine, J. W., 1977, Evolution, W. H. Freeman, San Francisco.Google Scholar
  36. Dunham, R. A., Philipp, D. P., and Whitt, G. S., 1980, Levels of duplicate gene expression in armoured catfishes, J. Hered. 71: 248–252.PubMedGoogle Scholar
  37. Echelle, A. A., and Mosier, D. T., 1981, All-female fish: A cryptic species of Menidia (Atherinidae), Science 212: 1411–1413.PubMedCrossRefGoogle Scholar
  38. Engle, W., Ohof, J., and Wolf, U., 1970, Genduplikation durch polyploide evolution: Die isoenzyme der Sorbitdehydrogenase bei herings-und lachsartigen Fischen (Isospondyli), Humangenetik 9: 157–163.CrossRefGoogle Scholar
  39. Falconer, D. S., 1981, Introduction to Quantitative Genetics, Longman, New York.Google Scholar
  40. Ferris, S. D., and Whitt G. S., 1979, Evolution of the differential regulation of duplicate genes after polyploidization, J. Mol. Evol. 12: 267–317.PubMedCrossRefGoogle Scholar
  41. Ferris, S. D., and Whitt, G. S., 1980, Genetic variability in species with extensive gene duplication: The tetraploid catostomid fishes, Am. Nat. 115: 650–666.CrossRefGoogle Scholar
  42. Fisher, S. E., Shaklee J. B., Ferris, S. D., and Whitt, G. S., 1980, Evolution of five multilocus isozyme systems in the chordates, Genetica 52: 73–85.CrossRefGoogle Scholar
  43. Fitch, W. M., 1976, Molecular evolutionary clocks, in: Molecular Evolution ( F. J. Ayala, ed.), Sinauer, Sunderland, Massachusetts, pp. 160–178.Google Scholar
  44. Flickinger, R., 1975, Relation of an evolutionary mechanism to differentiation, Differentiation 3: 155–159.PubMedCrossRefGoogle Scholar
  45. Gall, G. A. E., Busack, C. A., Smith, R. C., Gold, J. R., and Kornblatt, B. J., 1976, Biochemical genetic variation in populations of golden trout, Salmo aguabonita, J. Hered. 67: 330–335.PubMedGoogle Scholar
  46. Gervai, J., Peter, S., Nagy, A., Horvath, L., and Csanyi, V., 1980, Induced triploidy in carp, Cyprinus carpio L., J. Fish Biol. 17: 667–671.CrossRefGoogle Scholar
  47. Gerstel, D. U., and Phillips, L. L., 1958, Segregation of synthetic amphiploids in Gossypium and Nicotiana, Cold Spring Harbor Symp. Quant. Biol. 23: 225–236.CrossRefGoogle Scholar
  48. Gilles, A., and Randolph, L. F., 1951, Reduction of quadrivalent frequency in autotetraploid maize during a period of ten years, Am. J. Bot. 38: 12–17.CrossRefGoogle Scholar
  49. Gold, J. R., and Gall, G. A. E., 1975, Chromosome cytology and polymorphism in the California High Sierra golden trout (Salmo aquabonita), Can. J. Genet. Cytol. 17: 41–53.PubMedGoogle Scholar
  50. Gold, J. R., Karel, W. J., and Strand, M. R., 1980, Chromosome formulae of North American fishes, Prog. Fish Cult. 42: 10–23.CrossRefGoogle Scholar
  51. Goldberg, E., 1965, Lactate dehydrogenases in trout: Evidence for a third subunit, Science 148: 391–392.PubMedCrossRefGoogle Scholar
  52. Gould, S. J., 1980, Is a new and general theory of evolution emerging?, Paleobilogy 6: 119–130.Google Scholar
  53. Grammeltvedt, A. F., 1974, A method of obtaining chromosome preparations from rainbow trout (Salmo gairdneri) by leukocyte culture, Norw. J. Zool. 22: 129–134.Google Scholar
  54. Grell, E. H., 1961, Variations in preferential segregation of chromosome two in triploid females of Drosophila melanogaster, Genetics 46: 1267–1271.PubMedGoogle Scholar
  55. Haldane, J. B. S., 1933, The part played by recurrent mutation in evolution, Am. Nat. 67: 5–19.CrossRefGoogle Scholar
  56. Hartley, B. S., 1974, Enzyme families, in: Evolution in the Microbial World (M. J. Carlile and J. J. Skehel, eds. ), Cambridge University Press, pp. 151–182.Google Scholar
  57. Harris, H., 1980, The Principles of Human Biochemical Genetics, 3rd ed., Elsevier, New York.Google Scholar
  58. Hinegardner, R., 1976, Evolution of genome size, in: Molecular Evolution ( F. J. Ayala, ed.), Sinaver, Sunderland, Masschusetts, pp. 179–199.Google Scholar
  59. Hickok, L. G., 1978, Homoeologous chromosome pairing and restricted segregation in the fern Ceratopteris, Am. J. Bot. 5: 516–521.CrossRefGoogle Scholar
  60. Hunter, G. A., Donaldson, E. M., Goetz, F. W., and Edgell, P. R., 1982, Production of all female and sterile groups of coho salmon (Oncorhynchus kisutch) and experimental evidence for male heterogamety, Trans. Am. Fish. Soc. 111: 367–372.CrossRefGoogle Scholar
  61. Imhof, M., Leary, R., and Booke, H. E., 1980. Population of stock structure of lake whitefish, Coregonus clupeaformis, in northern Lake Michigan as assessed by isozyme electrophoresis, Can. J. Fish, Aquat. Sci. 37: 783–793.CrossRefGoogle Scholar
  62. Johnstone, R., Simpson, T. H., Youngson, A. F., and Whitehead, C., 1979, Sex reversal in salmonid culture. Part III, The progeny of sex-reversed rainbow trout, Aquaculture 18: 13–19.CrossRefGoogle Scholar
  63. Kacser, H., and Burns, J. A., 1981, The molecular basis of dominance, Genetics 97: 639–666.PubMedGoogle Scholar
  64. Karbe, L., 1964, Die chromosomenverhaltinisse bei den coregen des bodensees and einiger weiterer voralpiner seen, ein beitrag zum problem der speziation in der gatung, Coregonus, Z. Zool. Syst. Evolutionforschung 2: 18–40.Google Scholar
  65. Kijima, A., and Fujio, Y., 1980, Duplicated isozyme loci in chum salmon, Tohoku J. Agric. Res. 31: 159–172.Google Scholar
  66. Kincaid, H. L., 1975, Iridescent metallic blue color variant in rainbow trout, J. Hered. 66: 100–101.Google Scholar
  67. Klar, G. T., and Stalnaker, C. B., 1979, Electrophoretic variation in muscle lactate dehydrogenase in Snake Valley cutthroat trout, Salmo clarki subsp., Comp. Biochem. Physiol. 64B: 391–394.CrossRefGoogle Scholar
  68. Kobayasi, H., 1976, Comparative study of karyotypes in the small and large races of spinous loaches (Cobitis biwae), Zool. Mag. 85: 84–87.Google Scholar
  69. Lande, R., 1979, Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement, Evolution 33: 234–251.CrossRefGoogle Scholar
  70. Lee, G. M., and Wright, J. E., Jr., 1981, Mitotic and meiotic analyses of brook trout (Salvelinus fontinalis), J. Hered. 72: 321–327.Google Scholar
  71. Lewis, W. H. (ed.), 1980, Polyploidy: Biological Relevance, Plenum Press, New York.Google Scholar
  72. Li, C. C., 1975, First Course in Population Genetics, Boxwood Press, Pacific Grove, California.Google Scholar
  73. Li, W. H., 1980, Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes, Genetics 95: 237–258.PubMedGoogle Scholar
  74. Lim, S. T., and Bailey, G. S., 1977, Gene duplication in salmonid fish: Evidence for duplicated but catalytically equivalent A(4) lactate dehydrogenases, Biochem. Genet. 15: 707–721.PubMedCrossRefGoogle Scholar
  75. Lim, S. T., Kay, R. M., and Bailey, G. S., 1975, Lactate dehydrogenase isoenzymes of salmonid fish, Evidence for unique and rapid functional divergence of duplicated H4 lactate dehydrogenases, J. Biol. Chem. 250: 1790–1800.PubMedGoogle Scholar
  76. Little, T. M., 1945, Gene segregation in autotetraploids, in: The Botanical Review, Vol. XI (E. H. Fulling, ed.), The New York Botanical Garden, Bronx, New York, pp. 60–82.Google Scholar
  77. Liu, S., Sezaki, K., Hashimoto, K., Kobayasi, H., and Nakamura M., 1978, Simplified techniques for determination of polyploidy in ginbuna, Carassius auratus langsdorf, Bull. Jpn. Soc. Sci. Fish. 44: 601–606.CrossRefGoogle Scholar
  78. Loudenslager, E. J., and Thorgaard, G. H., 1979, Karyotypic and evolutionary relationships of the Yellowstone (Salmo clarki bouvieri) and West-Slope (S. c. lewisi) cutthroat trout, J. Fish. Res. Board Can. 36: 630–635.CrossRefGoogle Scholar
  79. Maitland, P. S., 1977, The Hamlyn Guide to Freshwater Fishes of Britain and Europe, Hamlyn, London.Google Scholar
  80. Marian, T., and Krasznai, Z., 1978, Karyological investigation on Ctenopharyngodon idella and Hypophthalmichthys nobilis and their crossbreeding, Aquacultura Hungarica 1: 44–50.Google Scholar
  81. Market, C. L., and Faulhaber, I., 1965, Lactate dehydrogenase isozyme patterns of fish, J. Exp. Zool. 159: 319–332.CrossRefGoogle Scholar
  82. Market, C. L., Shaklee, J. B., and Whitt, G. S., 1975, Evolution of a gene, Science 189: 102–114.CrossRefGoogle Scholar
  83. Massaro, E. J., 1972, Isozyme patterns of coregonus fishes: Evidence for multiple cistrons for lactate and malate dehydrogenases and achromatic bands in the tissue of Prosopium cyclindraceum (Pallas) and P. coulteri, J. Exp. Zool. 179: 247–262.CrossRefGoogle Scholar
  84. Massaro, E. J., 1973, Tissue distribution and properties of the lactate and supernatant malate dehydrogenase isozymes of the grayling, Thymallus arcticus (Pallas), J. Exp. Zool. 186: 151–158.CrossRefGoogle Scholar
  85. Massaro, E. J., and Markert, C. L., 1968, Isozyme patterns of fishes: Evidence for multiple cistrons for lactate dehydrogenase polypeptides, J. Exp. Zool. 168: 223–238.PubMedCrossRefGoogle Scholar
  86. May, B., 1980, The salmonid genome: Evolutionary restructuring following a tetraploid event, Ph. D. dissertation, Pennsylvania State University, University Park, Pennsylvania.Google Scholar
  87. May, B., Stoneking, M., and Wright, J. E., 1979a, Joint segregation of malate dehydrogenase and diaphorase loci in brown trout (Salmo trutta), Trans. Am. Fish. Soc. 108: 373–377.CrossRefGoogle Scholar
  88. May, B., Wright, J. E., and Stoneking, M., 1979b, Joint segration of biochemical loci in Salmonidae: Results from experiments with Salvelinus and review of the literature on other species, J. Fish. Res. Board Can. 36: 1114–1128.CrossRefGoogle Scholar
  89. May, B., Stoneking, M., and Wright, J. E., 1980, Joint segregation of biochemical loci in Salmonidae: II. Linkage associations from a hybridized Salvelinus genome (S. namaycush x S. fontinalis), Genetics 95: 707–726.PubMedGoogle Scholar
  90. May, B., Wright, J. E., and Johnson, K. R., 1982, Joint segregation of biochemical loci in Salmonidae. III. Linkage associations in Salmonidae including data from rainbow trout (Salmo gairdneri), Biochem. Gene. 20: 29–39.CrossRefGoogle Scholar
  91. Maynard Smith, J., 1978, The Evolution of Sex, Cambridge University Press, London.Google Scholar
  92. Melander, Y., and Monten, E., 1950, Probable parthenogenesis in Coregonus, Hereditas 36: 105–106.Google Scholar
  93. Morrison, W. J., 1970, Nonrandom segregation of two lactate dehydrogenase subunit loci in trout, Trans. Am. Fish. Soc. 1: 193–206.CrossRefGoogle Scholar
  94. Morrison, W. J., and Wright, J. E., 1966, Genetic analysis of three lactate dehydrogenase isozyme systems in trout: Evidence for linkage of genes coding subunits A and B, J. Exp. Zool. 163: 259–270.CrossRefGoogle Scholar
  95. Muller, H. J., 1925, Why polyploidy is rarer in animals than in plants, Am. Nat. 59: 345–353.CrossRefGoogle Scholar
  96. Muramoto, J. E., Ohno, S., and Atkin, N. B., 1968, On the diploid state of the fish order Ostariophysi, Chromosoma 24: 59–66.PubMedCrossRefGoogle Scholar
  97. Nelson, J. S., 1976, Fishes of the World, Wiley, New York.Google Scholar
  98. Niebuhr, E., 1974, Triploidy in man: Cytogenetical and clinical aspects, Humangenetik 21: 103–125.PubMedCrossRefGoogle Scholar
  99. Norden, C. R., 1961, Comparative osteology of representative salmonid fishes with particular reference to the grayling (Thymallus arcticus) and its phylogeny, J. Fish. Res. Board Can. 18: 679–753.CrossRefGoogle Scholar
  100. Nygren, A., Nilsson, B., and Jahnke, M., 1971a, Cytological studies in Salmo trutta and Salmo alpinus, Hereditas 67: 259–268.PubMedCrossRefGoogle Scholar
  101. Nygren, A., Nilsson, B., and Jahnke, M., 1971b, Cytological studies in Coregonus from Sweden, K. Vet. Samh. Upps. Arsb. 15: 5–20.Google Scholar
  102. Nygren, A., Nilsson, B., and Jahnke, M., 1972, Cytological studies in Atlantic salmon from Canada, in hybrids between Atlantic salmon from Canada and Sweden and in hybrids between Atlantic salmon and sea trout, Hereditas 70: 295–306.Google Scholar
  103. Obruchev, D. V., 1967, Fundamentals of Paleontology, Vol. XI, Agnatha, Pisces, Israel Program Scientific Translations, Jerusalem.Google Scholar
  104. Ohno, S., 1967, Sex Chromosomes and Sex-Linked Genes, Springer, Heidelberg.CrossRefGoogle Scholar
  105. Ohno, S., 1970a, Evolution by Gene Duplication, Springer Verlag, New York.Google Scholar
  106. Ohno, S., 1970b, The enormous diversity in genome sizes of fish as a reflection of nature’s extensive experiments with gene duplication, Trans. Am. Fish. Soc. 99: 120–130.CrossRefGoogle Scholar
  107. Ohno, S., 1974, Protochordata, Cyclostomata, and Pisces, in: Animal Cytogenetics, Vol. 4, Chordata 1 ( B. John, ed.), Gebrüder-Bornträger, Berlin.Google Scholar
  108. Ohno, S., Stenius, C., Faisst, E., and Zenzes, M. T., 1965, Post-zygotic chromosomal rearrangements in rainbow trout (Salmo irideus Gibbons), Cytogenetics 4: 117–129.CrossRefGoogle Scholar
  109. Ohno, S., Muramoto, J., Christian, L., and Atkin, N. B., 1967, Diploid—tetraploid relationship among old world members of the fish family Cyprinidae, Chromosoma 23: 19.CrossRefGoogle Scholar
  110. Ohno, S., Wolf, U., and Atkin, N. B., 1968, Evolution from fish to mammals by gene duplication, Hereditas 59: 169–187.PubMedCrossRefGoogle Scholar
  111. Ohno, S., Muramoto, J., Steinus, C., Christian, L., Kittrell, W. A., and Atkin, N. B., 1969a, Microchromosomes in holocephalian, chondrostean and holostean fishes, Chromosoma 26: 35–40.PubMedCrossRefGoogle Scholar
  112. Ohno, S., Muramoto, J., Klein, J., and Atkin, N. B., 1969b, Diploid—tetraploid relationship in clupeoid and salmonoid fish, in: Chromosomes Today, Vol. 21. ( C. D. Darlington and K. R. Lewis, eds.), Oliver and Boyd, Edinburgh, pp. 139–147.Google Scholar
  113. Okada, H., Matumoto, H., and Yamazaki, F., 1979, Functional masculinization of genetic females in rainbow trout, Bull. Jpn. Soc. Sci. Fish. 45: 413–419.CrossRefGoogle Scholar
  114. Pederson, R. A., 1971, DNA content, ribosomal gene multiplicity, and cell size in fish, J. Exp. Zool. 177: 65–78.CrossRefGoogle Scholar
  115. Proudfoot, N., 1980, Pseudogenes, Nature 286: 840–841.PubMedCrossRefGoogle Scholar
  116. Purdom, C. E., 1972, Induced polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichthys fíesus), Heredity 29: 11–24.PubMedCrossRefGoogle Scholar
  117. Raicu, P., and Taisescu, E., 1972, Misgurnus fossilis, a tetraploid fish species, J. Hered. 63: 92–94.Google Scholar
  118. Rees, H., 1964, The question of polyploidy in the Salmonidae, Chromosoma (Berl.) 15: 275–279.CrossRefGoogle Scholar
  119. Refstie, T., 1981, Tetraploid rainbow trout produced by cytochalasin B, Aquaculture 25: 51–58.CrossRefGoogle Scholar
  120. Refstie, T., Stoss, J., and Donaldson, E., 1982, Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock, Aquaculture 29: 67–82.CrossRefGoogle Scholar
  121. Ricker, W. E., 1962, Russian—English glossary of names of aquatic organisms and other biological and related terms, Fisheries Research Board of Canada Circular No. 65.Google Scholar
  122. Roberts, F. L., 1968, Chromosomal polymorphism in North American landlocked Salmo salar, Can. J. Genet. Cytol. 10: 865–875.Google Scholar
  123. Roberts, F. L., 1970, Atlantic salmon (Salmo salar chromosomes and speciation, Trans. Am. Fish. Soc. 99: 105–111.CrossRefGoogle Scholar
  124. Robins, R. C., Bailey, R. M., Bond, C. E., Brooker, J. R., Lachner, E. A., Lea, R. N., and Scott, W. B., 1980, A list of common and scientific names of fishes from the United States and Canada, 4th ed., American Fisheries Society Special Publication No. 12.Google Scholar
  125. Ryman, N., Allendorf, F. W., and Stahl, G., 1979, Reproductive isolation with little genetic divergence in sympatric populations of brown trout (Salmo trutta), Genetics 92: 247–262.PubMedGoogle Scholar
  126. Schmidtke, J., and Kandt, I., 1981, Single-copy DNA relationships between diploid and tetraploid teleostean fish species, Chromosoma 83: 191–197.PubMedCrossRefGoogle Scholar
  127. Schmidtke, J., Atkin, N. B., and Engel, W., 1975, Gene action in fish of tetraploid origin. II. Cellular and biochemical parameters in Clupeoid and Salmonoid fish, Biochem. Gent. 13: 301–308.CrossRefGoogle Scholar
  128. Schmidtke, J., Schmitt, E., Matzke, E., and Engel, W., 1979, Non-repetitive DNA sequence divergence in phylogenetically diploid and tetraploid teleostan species of the family Cyprinidae and the order Isospondyli, Chromosoma 75: 185–198.PubMedCrossRefGoogle Scholar
  129. Schultz, R. J., 1969, Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates, Am. Nat. 108: 605–619.CrossRefGoogle Scholar
  130. Schultz, R. J., 1980, Role of polyploidy in the evolution of fishes, in: Polyploidy: Biological Relevance ( W. H. Lewis, ed.), Plenum Press, New York, pp. 313–340.Google Scholar
  131. Sears, E. R., 1976, Genetic control of chromosome pairing in wheat, Annu. Rev. Genet. 10: 31–51.PubMedCrossRefGoogle Scholar
  132. Selander, R. K., 1982, Phylogeny, in: Perspectives on Evolution ( Roger Milkman, ed.), Sinauer, Sunderland, Massachusetts, pp. 32–59.Google Scholar
  133. Sezaki, K., and Kobayasi, H., 1978, Comparison of erythrocyte size between diploid and tetraploid in spinous loach, Cobitis biwae, Bull. Jpn. Soc. Sci. Fish, 44: 851–854.CrossRefGoogle Scholar
  134. Shaklee, J. B., and Whitt, G. S., 1981, Lactate dehydrogenase isozymes of Gadiform fishes: Divergent patterns of gene expression indicate a heterogeneous taxon, Copeia 1981: 563–578.CrossRefGoogle Scholar
  135. Shaver, D. L., 1963, The effect of structural heterozygosity on the degree of preferential pairing in allotetraploids of Zea, Genetics 48: 515–524.PubMedGoogle Scholar
  136. Simon, R. C., 1964, Cytogenetics, relationships and evolution in Salmonidae, Ph. D. Thesis, University of Washington, Seattle.Google Scholar
  137. Smith, L. T., and Lemoine, H. L., 1979, Colchicine-induced polyploidy in brook trout, Prog. Fish Cult. 41: 86–88.CrossRefGoogle Scholar
  138. Sola, L., Cataudella, S., and Capanna, E., 1981, New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: A review, Genetica 54: 285–328.CrossRefGoogle Scholar
  139. Spofford, J. B., 1969, Heterosis and the evolution of duplications, Am. Nat. 103: 407–430.CrossRefGoogle Scholar
  140. Stebbins, G. L., 1977, Process of Organic Evolution, 3rd ed., Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  141. Stegeman, J. J., and Goldberg, E., 1972, Inheritance of hexose-6-phosphate dehydrogenase polymorphism in brook trout, Biochem. Genet. 7: 279–288.PubMedCrossRefGoogle Scholar
  142. Stoneking, M., May, B., and Wright, J. E., 1979, Genetic variation inheritance, and quaternary structure of malic enzyme in brook trout, Biochem. Genet. 17: 599–619.PubMedCrossRefGoogle Scholar
  143. Svardson, G., 1945, Chromosome studies of salmonidae, Rep. Swed. State Inst. FreshWater Fish. Res. 23: 1–151.Google Scholar
  144. Swaminathan, M. S., and Sulbha, K., 1959, Multivalent frequency and seed fertility in raw and evolved tetraploids of Brassica campestris var. toria, Z. Vererbungsl. 90: 385–392.CrossRefGoogle Scholar
  145. Swanson, C. P., Merz, T., and Young., W. J., 1981, Cytogenetics: The Chromosome in Division, Inheritance and Evolution, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  146. Swarup, H., 1959, Production of triploidy in Gasterosteus aculeatus (L.), J. Genet. 56: 129–142.CrossRefGoogle Scholar
  147. Sybenga, J., 1972, General Cytogenetics, American Elsevier, New York.Google Scholar
  148. Thorgaard, G. H., 1976, Robertsonian polymorphism and constitutive heterochromatin distribution in chromosomes of the rainbow trout Salmo gairdneri, Cytogenet. Cell Genet. 17: 174–184.PubMedCrossRefGoogle Scholar
  149. Thorgaard, G. H., 1977, Heteromorphic sex chromosomes in male rainbow trout, Science 196: 900–902.PubMedCrossRefGoogle Scholar
  150. Thorgaard, G. H., 1978, Sex chromosomes in the sockeye salmon: A Y-autosome fusion, Can. J. Genet. Cytol. 20: 349–354.PubMedGoogle Scholar
  151. Thorgaard, G. H., and Gall, G. A. E., 1979, Adult triploids in a rainbow trout family, Genetics 93: 961–973.PubMedGoogle Scholar
  152. Thorgaard, G. H., Jazwin, M. E., and Stier, A. R., 1981, Polyploidy induced by heat shock in rainbow trout, Trans. Am. Fish. Soc. 110: 546–550.CrossRefGoogle Scholar
  153. Utter, F. M., Allendorf, F. W., and Hodgins, H. O., 1973, Genetic variability and relationships in Pacific salmon and related trout based on protein variations, Syst. Zool. 22: 257–270.CrossRefGoogle Scholar
  154. Uyeno, T., 1972, Chromosomes of offspring resulting from crossing coho salmon and brook trout, Jpn. J. Ichthyol. 19: 166–171.Google Scholar
  155. Uyeno, T., and Smith, G. R., 1972, Tetraploid origin of the karyotype of catostomid fishes, Science 175: 644–646.PubMedCrossRefGoogle Scholar
  156. Valenti, R. J., 1975, Induced polyploidy in Tilapia aurea (Steindachner) by means of temperature shock treatment, J. Fish Biol. 7: 519–528.CrossRefGoogle Scholar
  157. Valentine, J. W., and Campbell, C. A., 1975, Genetic regulation and the fossil record, Am. Sci. 63: 673–680.PubMedGoogle Scholar
  158. Vasilev, V. P., Makeeva, A. P., and Ryabov, I. N., 1975, Triploidy of hybrids of carp with other representatives of the family Cyprinidae, Genetika 11: 49–56.Google Scholar
  159. Vervoort, A., 1980, Tetraploidy in Protopterus (Dipnoi), Experientia 36: 294–295.CrossRefGoogle Scholar
  160. Wallace, B., 1963, The annual invitation lecture. Genetic diversity, genetic uniformity, and heterosis, Can. J. Genet. Cytol. 5: 239–253.Google Scholar
  161. Walters, M. S., and Gerstel, D. V., 1948, A cytological investigation of a tetraploid Rhoeo discolor, Am. J. Bot. 35: 141–150.CrossRefGoogle Scholar
  162. White, M. J. D., 1973, Animal Cytology and Evolution, Cambridge University Press, London.Google Scholar
  163. White, M. J. D., 1978, Modes of Speciation, W. H. Freeman, San Francisco.Google Scholar
  164. Whitt, G. S., 1981, Developmental genetics of fishes: Isozymic analyses of differential gene expression, Am. Zool. 21: 549–572.Google Scholar
  165. Wilson, A. C., 1976, Gene regulation in evolution, in: Molecular Evolution ( F. J. Ayala, ed.), Sinauer, Sunderland, Massachusetts, pp. 225–234.Google Scholar
  166. Wolf, U., Ritter, H., Atkin, N. B., and Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae, Humangenetik 7: 240–244.PubMedCrossRefGoogle Scholar
  167. Wolf, U., Engel, W., and Faust, J., 1970, The mechanism of diploidization in vertebrate evolution: Coexistence of tetrasomic and disomic gene loci for the isocitrate dehydrogenases in trout (Salmo irideus), Humangenetik 9: 150–156.PubMedCrossRefGoogle Scholar
  168. Wolters, W. R., Libey, G. S., and Chrisman, C. L., 1981, Induction of triploidy in channel catfish, Trans. Am. Fish. Soc. 110: 310–312.CrossRefGoogle Scholar
  169. Wright, J. E., 1972, The palomino rainbow trout, Pa. Angler Mag. 41: 8–9.Google Scholar
  170. Wright, J. E., Heckman, J. R., and Atherton, L. M., 1975 Genetic and developmental analyses of LDH isozymes in trout in: Isozymes III: Developmental Biology (C. L. Markert, ed.) Academic Press, New York, pp. 375–399.Google Scholar
  171. Wright, J. E., May, B., Stoneking, M., and Lee, G. M., 1980, Pseudolinkage of the duplicate loci for supernatant aspartate aminotransferase in brook trout, Salvelinus fontinalis, J. Hered. 71: 223–228.PubMedGoogle Scholar
  172. Wright, J. E., Johnson, K., Hollister, A., and May, B., 1983, Meiotic models to explain classical linkage, pseudolinkage and chromosome pairing in tetraploid derivative salmonids, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 10 ( M. C. Rattazzi, J. G. Scandalios and G. S. Whitt, eds.), Alan R. Liss, New York, pp. 239–260.Google Scholar
  173. Wright, S., 1951, The genetical structure of populations, Ann. Eugen. 15: 323–354.CrossRefGoogle Scholar
  174. Zenzes, M. T., and Voiculescu, I., 1975, C-Banding patterns in Salmo trutta, a species of tetraploid origin, Genetica 45: 531–536.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Fred W. Allendorf
    • 1
  • Gary H. Thorgaard
    • 2
  1. 1.Department of ZoologyUniversity of MontanaMissoulaUSA
  2. 2.Program in Genetics and Cell BiologyWashington State UniversityPullmanUSA

Personalised recommendations