Formation of Bioorganic Compounds in Aqueous Solution Induced by Contact Glow Discharge Electrolysis

  • Kaoru Harada


There are several types of electric discharge, which have been studied mainly with the reactions in gaseous phase and under relatively low pressure. Such discharges are certainly an interesting problem relevant to the field of chemical evolution. Past work has shown that electric discharges carried out under reducing atmospheres yielded several amino acids, both those common to protein and others (Miller, 1953, 1955; Fox and Dose, 1977). Electric discharge has been used in chemical evolution because it is considered to be a model of lightning in the atmosphere on the primitive Earth. Among other energy sources (ultraviolet rays, γ-rays, charged ionizing radiations, heat and shock waves, etc.) available on the primitive Earth, electric discharge is chemically effective and can easily be reproduced in the laboratory for model experiments on the prebiotic formation of bioorganic compounds.


Electric Discharge Pyruvic Acid Glycolic Acid Hydrogen Abstraction Orotic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, E. H., Wilhide, W. D., and Elmore, K. L., 1962, J. Org. Chem., 27: 3698.CrossRefGoogle Scholar
  2. Denaro, A. R., and Hickling, A., 1958, J. Electrochem. Soc., 105: 265.CrossRefGoogle Scholar
  3. Ebisawa, H., Mitsugi, E., Shirai, T., and Yanagisawa, S., 1979, Nippon Kagaku Zasshi, 1304.Google Scholar
  4. Fox, S. W., and Dose, K., 1977, “Molecular Evolution and the Origin of Life,” 2nd edn., Marcel Dekker, New York (literatures listed therein).Google Scholar
  5. Harada, K., 1974, in: “The Origin of Life and Evolutionary Biochemistry,” K. Dose, S. W. Fox, G. A. Deborin, and T. E. Pavlovskaya, eds., p. 183, Plenum, New York.CrossRefGoogle Scholar
  6. Harada, K., and Iwasaki, T., 1975, Chem. Lett., 185.Google Scholar
  7. Harada, K., Nomoto, M. M., and Gunji, H., 1981, Tetrahedron Lett., 22: 769.CrossRefGoogle Scholar
  8. Harada, K., and Nomoto, M. M., 1982, unpublished experiments.Google Scholar
  9. Harada, K., Nomoto, S., Suzuki, S., and Yamada, A., 1982, unpublished experiments.Google Scholar
  10. Harada, K., and Suzuki, S., 1977a, Nature, 266: 275.PubMedCrossRefGoogle Scholar
  11. Harada, K., and Suzuki, S., 1977b, Naturwiss., 64: 484.PubMedCrossRefGoogle Scholar
  12. Harada, K., Suzuki, S., and Ishida, H., 1978, Experientia, 34: 17.CrossRefGoogle Scholar
  13. Harada, K., Suzuki, S.; Ishida, H., Matsuyama, M., and Tamura, M., 1978, in: “Origin of Life,” H. Noda, ed., p. 141, Japan Scientific Societies Press, Tokyo.Google Scholar
  14. Harada, K., Suzuki, S., and Ishida, H., 1978, BioSystems, 10: 247.PubMedCrossRefGoogle Scholar
  15. Harada, K., and Terasawa, J., 1980a, Chem. Lett., 441.Google Scholar
  16. Harada, K., and Terasawa, J., 1980b, Chem. Lett., 1545.Google Scholar
  17. Harada, K., Terasawa, J., and Gunji, H., 1981, in: “Origin of Life,” Y. Wolman, ed., p. 173, Reidl, Dordrecht, Holland.Google Scholar
  18. Harada, K., Terasawa, J., and Suzuki, S., 1978, Naturwiss., 65: 259.CrossRefGoogle Scholar
  19. Hickling, A., 1971, in: “Modern Aspects of Electrochemistry,” J. O’M. Bockris and B. E. Cornway, eds., No. 6, p. 329.Google Scholar
  20. Hickling, A., and Ingram, M. D., 1964a, J. Chem. Soc., 783.Google Scholar
  21. Hickling, A., and Ingram, M. D., 1964b, J. Electroanal. Chem., 8: 65.Google Scholar
  22. Hickling, A., and Newns, G. R., 1959, Proc. Chem. Soc., 368.Google Scholar
  23. Hickling, A., and Newns, G. R., 1961, J. Chem. Soc., 5177; 5186.Google Scholar
  24. Kokufuta, E., Fujii, S., Ishibashi, H., Yokoi, H., Harada, K., and Nakamura, I., 1980, Polymer Bull., 3: 173.CrossRefGoogle Scholar
  25. Kokufuta, E., Fujii, S., Shibasaki, T., Harada, K., and Nakamura, I., 1981, unpublished results.Google Scholar
  26. Mazzocchin, G. A., Magno, F., and Bontempelli, G., 1973, J. Electroanal. Chem. Interfac. Electrochem., 45: 471.Google Scholar
  27. Miller, S. L., 1953, Science, 117: 528.PubMedCrossRefGoogle Scholar
  28. Miller, S. L., 1955, J. Am. Chem. Soc., 77: 2351.Google Scholar
  29. Nomoto, M. M., Sakai, F., and Harada, K., 1981, Polymer Bull., 5: 451.CrossRefGoogle Scholar
  30. Steinman, G. D., 1966, Science, 154: 1344.PubMedCrossRefGoogle Scholar
  31. Steinman, G. D., and Lillevik, H. A., 1964, Arch. Biochem. Biophys., 105: 303.Google Scholar
  32. Suzuki, S., Tamura, M., Terasawa, J., and Harada, K., 1978, Bioorg. Chem., 7: 111.CrossRefGoogle Scholar
  33. Terasawa, J., and Harada, K., 1980, Chem. Lett., 73.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kaoru Harada
    • 1
  1. 1.Institute of ChemistryUniversity of TsukubaSakura-mura, Ibaraki 305Japan

Personalised recommendations