Advertisement

One-Carbon Compounds in the Prebiotic Syntheses of Biomolecules

  • A. S. U. Choughuley

Abstract

The main one-carbon compounds that may have participated in the primitive Earth’s chemical syntheses are methane, carbon monoxide, carbon dioxide, formaldehyde, formic acid, formamide, hydrogen cyanide, cyanamide and urea. Except urea, all these compounds are also known to be present in the atmosphere of other planets or in interstellar dust clouds. Some other one-carbon species detected in interstellar medium include methylidyne (CH), methylidyne ion (CH+), cyanogen radical (CN), hydrogen isocyanide (HNC), formyl radical (HCO), formyl ion (HCO+), methyl alcohol (CH3OH), isocyanic acid (HNCO), carbon monosulfide (CS), carbonyl sulfide (OCS) and thioformaldehyde (H2CS). In addition, methyne (CH2), CO 2 + and CO+ have been detected in comets (Oro, 1972; Schwartz, 1981). These highly reactive species are not found in the atmosphere, geosphere, or hydrosphere of the earth, and as such may not have played any significant role in the prebiotic chemistry of our planet--except to form relatively more stable compounds, if they did exist for very short periods.

Keywords

Orotic Acid Hydrogen Cyanide Iminodiacetic Acid Carbonyl Sulfide PREBIOTIC Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H., 1956, Carnegie Inst. Wash. Yearbook, 1955–1956, 55: 171Google Scholar
  2. Abelson, P. H., 1966, Proc. Nat. Acad. Sci., U.S., 55: 1365.Google Scholar
  3. Adams, R., and Langley, W. D., 1956, Organic Synthesis, Coll., Vol. 1, Gilman and Blatt, eds., 2nd edn., pp. 355–357, Wiley, New York.Google Scholar
  4. Anders, E., Hayatsu, R., and Studier, M. H., 1974, Origins Life, 5: 57.Google Scholar
  5. Bahadur, K., 1954, Nature, 173: 1141.Google Scholar
  6. Bar-Nun, A., Bar-Nun, N., Bauer, S. H., and Sagan, C., 1970, Science, 168: 470.PubMedGoogle Scholar
  7. Breslow, R., 1959, Tetrahedron Lett., 21: 22.Google Scholar
  8. Butlerow, A., 1861, Ann., 120: 296.Google Scholar
  9. Chadha, M., Lawless, J., Flores, J., and Ponnamperuma, C., 1971, in: “Molecular Evolution,” Vol. 1, C. Ponnamperuma and R. Buvet, eds., pp. 143–151, North-Holland, Amsterdam.Google Scholar
  10. Chadha, M. S., Molton, P. M., and Ponnamperuma, C., 1975, Origins Life, 6: 127.Google Scholar
  11. Chittenden, G. J. F., and Schwartz, A. W., 1976, Nature, 263: 350.PubMedGoogle Scholar
  12. Choughuley, A. S. U., and Lemmon, R. M., 1965, Nature, 210: 628.Google Scholar
  13. Choughuley, A. S. U., Subbaraman, A. S., and Kazi, Z. A., 1972, Indian J. Biochem. Biophys., 9: 144.PubMedGoogle Scholar
  14. Choughuley, A. S. U., Subbaraman, A. S., and Kazi, Z. A., 1975, Origins Life, 6: 527.Google Scholar
  15. Choughuley, A. S. U., Subbaraman, A. S., Kazi, Z. A., and Chadha, M. S., 1977, Bio Systems, 9: 73.PubMedGoogle Scholar
  16. Choughuley, A. S. U., 1980, in: “Origin and Evolution of Life and Intelligence in the Universe,” M. S. Chadha, S. M. Chitre, and R. R. Daniel, eds., pp. 85–90, Indian Space Research Organization, Banglore.Google Scholar
  17. Cline, R. E., Fink, R. M., and Fink, K., 1959, J. Amer. Chem. Soc., 81: 2521.Google Scholar
  18. Dodonova, N. Y., and Sidorava, A. I., 1961, Biophysics, 6: 14.Google Scholar
  19. Dose, K., and Rajewsky, B., 1957, Biochem. Biophys. Acta, 25: 225.PubMedGoogle Scholar
  20. Draganic, I., Draganic, Z., Shimoyama, A., and Ponnamperuma, C., 1978, Origins Life, 8: 371.Google Scholar
  21. Draganic, I., Draganic, Z., Shimoyama, A., and Ponnamperuma, C., 1978, in: “Origin of Life,” H. Noda, ed., pp. 129–133, Japan Sci. Soc. Press, Tokyo.Google Scholar
  22. Egami, F., 1981, Origins Life, 11: 198.Google Scholar
  23. Euler, M., and Euler, A., 1906, Ber., 39: 50.Google Scholar
  24. Ferris, J. P., Donner, D. B., and Lobo, A. P., 1973, J. Mol. Biol., 74: 511.PubMedGoogle Scholar
  25. Ferris, J. P., and Edelson, E. H., 1978, J. Org. Chem., 43: 3989.Google Scholar
  26. Ferris, J. P., Edelson, E. H., Auying, J. M., and Joshi, P. C., 1981, J. Mol. Evol., 17: 69.PubMedGoogle Scholar
  27. Ferris, J. P., and Joshi, P. C., 1978, Science, 201: 361.PubMedGoogle Scholar
  28. Ferris, J. P., Joshi, P. C., Edelson, E. H., and Lawless, J. G., 1978, J. Mol. ‘Evol., 11: 293.PubMedGoogle Scholar
  29. Ferris, J. P., Joshi, P. C., and Lawless, J. G., 1977, BioSystems, 9: 81.PubMedGoogle Scholar
  30. Ferris, J. P., Kuder, J. E., and Catalono, A. W., 1969, Science, 166: 765.PubMedGoogle Scholar
  31. Ferris, J. P., and Orgel, L. E., 1966, J. Amer. Chem. Soc., 88: 3829.Google Scholar
  32. Ferris, J. P., Sanchez, R. A., and Orgel, L. E., 1968, J. Mol. Biol., 33: 693.PubMedGoogle Scholar
  33. Ferris, J. P., Wos, J. D., Nooner, D. W., and Oro, J., 1974, J. Mol. Evol., 3: 225.PubMedGoogle Scholar
  34. Ferris, J. P., Zamek, O. S., Altbutch, A. M., and Freiman, H., 1974, J. Mol. Evol., 3: 301.PubMedGoogle Scholar
  35. Fox, S. W., 1963, in: “Organic Geochemistry,” I. A. Berger, ed., pp. 36–48, Pergamon Press, London.Google Scholar
  36. Fox, S. W., ed., 1965, “The Origins of Prebiological Systems and of Their Molecular Matrices,” Academic Press, New York.Google Scholar
  37. Fox, S. W., and Harada, K., 1961, Arch. Biochem. Biophys., 86: 3745.Google Scholar
  38. Fox, S. W., and Windsor, C. R., 1970, Science, 166: 984.Google Scholar
  39. Gabel, N. W., and Ponnamperuma, C., 1967, Nature, 216: 453.PubMedGoogle Scholar
  40. Garrison, W. H., Morrison, D. C., Hamilton, J. G., Benson, A., and Calvin, M., 1951, Science, 114: 416.PubMedGoogle Scholar
  41. Grossenbacher, K. A., and Knight, C. A., 1965, in: “The Origins of Prebiological Systems and of Their Molecular Matrices,” S. W. Fox, ed., pp. 173–186, Academic Press, New York.Google Scholar
  42. Groth, W., and Von Wessenchoff, H., 1957, Naturwiss., 44: 510.Google Scholar
  43. Haldane, J. B. S., 1928, Rationalist Annual, 148: 3.Google Scholar
  44. Harada, K., 1967, Nature, 214: 479.Google Scholar
  45. Harada, K., and Fox, S. W., 1964, Nature, 210: 335.Google Scholar
  46. Harada, K., and Fox, S. W., 1965, in: “The Origins of Prebiological Systems and of Their Molecular Matrices,” S. W. Fox, ed., pp. 187–201, Academic Press, New York.Google Scholar
  47. Harada, K., and Suzuki, S., 1977, Naturwiss., 64: 484.PubMedGoogle Scholar
  48. Hayatsu, R., Studier, M. H., Oda, A., Fuse, K., and Anders, E., 1968, Geochem. Cosmochim. Acta, 32: 175.Google Scholar
  49. Hayatsu, R., Studier, M. H., and Anders, E., 1971, Geochim. Cosmochim. Acta, 35: 939.Google Scholar
  50. Heyns, K., Walter, W, and Meyer, E., 1957, Naturwiss., 44: 385.Google Scholar
  51. Hodgson, G. W., and Baker, B. L., 1967, Nature, 216: 29.PubMedGoogle Scholar
  52. Hodgson, G. W., and Ponnamperuma, C., 1968, Proc. Nat. Acad. Sci. U.S., 59: 22.Google Scholar
  53. Holland, H. D., 1962, in: “Petrologic Studies, A Volume to honour A. F. Buddington,” A. E. J. Engel, H. L. James, and B. F. Leonard, eds., pp. 447–477, Geol. Soc. Amer., Boulder, Colorado.Google Scholar
  54. Holland, H. D., 1978, “The Chemistry of the Atmosphere and Oceans,” p. 351, Wiley - Interscience, New York.Google Scholar
  55. Ibanez, J. D., Kimball, A. P., and Oro, J., 1971, J. Mol. Evol., 1: 112.PubMedGoogle Scholar
  56. Khare, B. M., and Sagan, C., 1971, Nature, 232: 577.PubMedGoogle Scholar
  57. Labadie, M., Jensen, R., and Neuzil, E., 1968, Biochim. Biophys, Acta, 165: 525.Google Scholar
  58. Lemmon, R. M., 1970, Chem. Rev., 70: 95.Google Scholar
  59. Loew, O., 1986, U. Prakt. Chem., 34: 51.Google Scholar
  60. Loew, O., 1887, Ber., 20: 144.Google Scholar
  61. Loew, O., 1889, Ber., 22: 475.Google Scholar
  62. Lohrmann, R., 1972, J. Mol. Evol., 1: 263.PubMedGoogle Scholar
  63. Lohrmann, R., and Orgel, L. E., 1971, Science, 171: 490.PubMedGoogle Scholar
  64. Lowe, C. U., Rees, M. W., and Markham, R., 1963, Nature, 199: 219.PubMedGoogle Scholar
  65. Matthews, C. N., and Moser, R. E., 1967, Nature, 215: 1230.PubMedGoogle Scholar
  66. Miller, S. L., 1953, Science, 117: 528.PubMedGoogle Scholar
  67. Miller, S. L., 1955, J. Amer. Chem. Soc., 77: 2351.Google Scholar
  68. Morita, K., Ochiai, M., and Marumoto, R., 1968, Chem. Ind., 1117.Google Scholar
  69. Moser, R. E., Clagget, A. R., and Matthews, C. N., 1968a, Tetrahedron Lett., 13: 1605.PubMedGoogle Scholar
  70. Moser, R. E., Clagget, A. R., and Matthews, C. N., 1968b, Tetrahedron Lett., 13: 1599.PubMedGoogle Scholar
  71. Moser, R. E., and Matthews, C. N., 1968, Experientia, 24: 658.PubMedGoogle Scholar
  72. Oparin, A. I., 1924, Proiskhozhdenie Zhizni (The Origin of Life) Izd. Moskovskiy Rabochiy, Moscow.Google Scholar
  73. Oro, J., 1960, Biochem. Biophys. Res. Commun., 2: 407.Google Scholar
  74. Oro, J., 1963, Ann. N.Y. Acad. Sci., 108: 464.PubMedGoogle Scholar
  75. Oro, J., 1965, in: “The Origins of Prebiologival Systems and of Their Molecular Matrices,” S. W. Fox, ed., pp. 137–171, Academic Press, New York.Google Scholar
  76. Oro, J., 1965, in: “Current Aspects of Exobiology,” G. Mamikunian, and M. H. Briggs, eds., pp. 13–76, Permagon, New York.Google Scholar
  77. Oro, J., 1972, Space Life Sci., 3: 507.PubMedGoogle Scholar
  78. Oro, J., and Cox, A. C., 1962, Federation Proc., 21: 80.Google Scholar
  79. Oro, J., and Kamat, S. S., 1961, Nature, 190: 442.PubMedGoogle Scholar
  80. Oro, J., Kimball, A., Fretz, R., and Master, F., 1959, Arch. Biochem. Biophys., 85: 115.PubMedGoogle Scholar
  81. Oro, J., and Kimball, A. P., 1961, Arch. Biochem. Biophys., 94: 217.PubMedGoogle Scholar
  82. Palm, C., and Calvin, M., 1962, J. Amer. Chem. Soc., 84: 2115.Google Scholar
  83. Pavlovskaia, T. E., and Pasynskii, A. G., 1959, in: “The Origin of Life on Earth,” A. I. Oparin, ed., pp. 151–157, Pergamon Press, Oxford.Google Scholar
  84. Philipp, M., and Seliger, H., 1977, Naturwiss., 64: 273.PubMedGoogle Scholar
  85. Ponnamperuma, C., 1965, in: “The Origins of Prebiological Systems and of Their Molecular Matrices,” S. W. Fox, ed., pp. 221–241, Academic Press, New York.Google Scholar
  86. Ponnamperuma, C., and Flores, J., 1966, Abs. No. C-33, Amer. Chem. Soc. 152nd Meeting, Sept. 11–16.Google Scholar
  87. Ponnamperuma, C., and Gabel, N. W., 1968, Space Life Sciences, 1: 64.PubMedGoogle Scholar
  88. Ponnamperuma, C., Lemmon, R. M., Mariner, R., and Calvin, M., 1963, Proc. Nat. Acad. Sci.. U.S., 49: 737.Google Scholar
  89. Ponnamperuma, C., and Peterson, E., 1965, Science, 147: 1572.PubMedGoogle Scholar
  90. Ponnamperuma, C., and Shimoyama, A., 1982, Origins Life, 12: 9.Google Scholar
  91. Ponnamperuma, C., and Woeller, F., 1967, Curr. Mod. Biol., 1: 156.PubMedGoogle Scholar
  92. Reid, C., 1959, in: “The Origin of Life on the Earth,” A. I. Oparin, ed., pp. 619–625, Pergamon Press, New York.Google Scholar
  93. Ring, D., Wolman, V., Friedmann, N., and Miller, S. L., 1972, Proc. Nat. Acad. Sci. U.S., 69: 765.Google Scholar
  94. Rubey, W. W., 1951, Geol. Soc. Amer. Bull., 62: 1111.Google Scholar
  95. Rubey, W. W., 1955, in: “Crust of the Earth,” A. Polelervart, ed., pp. 631–650, Geol. Soc. Amer., New York.Google Scholar
  96. Sagan, C., and Khare, B. M., 1971, Science, 173: 417.PubMedGoogle Scholar
  97. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., 1966, Science, 153: 72.PubMedGoogle Scholar
  98. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., 1966, Science, 154: 784.PubMedGoogle Scholar
  99. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., 1967, J. Mol. Biol., 30: 223.PubMedGoogle Scholar
  100. Sanchez, R. A., Ferris, J. P., and Orgel, L. E., 1968, J. Mol. Biol., 38: 121.PubMedGoogle Scholar
  101. Sandoval, A. A., and Young, V., 1973, BioSystems, 5: 161.Google Scholar
  102. Schimpl, A., Lemmon, R. M., and Calvin, M., 1965, Science, 147: 149.PubMedGoogle Scholar
  103. Schwartz, A. W., 1981, in: “Marine Organic Chemistry,” E. K. Duurama, and R. Dawson, eds., pp. 7–30, Elsevier, Amsterdam.Google Scholar
  104. Schwartz, A. W., and Chittenden, G. J. F., 1977, BioSystems, 9: 87.PubMedGoogle Scholar
  105. Schwartz, A. W., and Goverde, M., 1982, J. Mol. Evol., 18: 351.PubMedGoogle Scholar
  106. Shimoyama, A., Blair, N., and Ponnamperuma, C., 1978, in: “Origin of Life,” H. Noda, ed., pp. 95–99, Japan Sci. Soc. Press, Tokyo.Google Scholar
  107. Simionescu, C. I., Simionescu, B. C 1978, Origins Life, 9: 103.Google Scholar
  108. Snyder, L. E., Buhl, B., Zuckerman, Rev. Lett., 22: 679.Google Scholar
  109. Steinman, G. D., Kenyon, D. H., and Calvin, M., 1965, Nature, 206: 707.Google Scholar
  110. Steinman, G. D., Kenyon, D. H., and Calvin, M., 1966, Biochem. Biophys. Acta, 124: 339.PubMedGoogle Scholar
  111. Steinman, G. D., Lemmon, R. M., and Calvin, M., 1964, Proc. Nat. Acad. Sci., U.S., 52: 27.Google Scholar
  112. Steinman, G. D., Lemmon, R. M., and Calvin, M., 1965, Science, 147: 1574.PubMedGoogle Scholar
  113. Stephen-Sherwood, E., and Oro, J., 1973, Space Life Sciences, 4: 5.PubMedGoogle Scholar
  114. Stephen-Sherwood, E., Odom, D. G., and Ore, J., 1974, in: “Cosmochemical Evolition and the Origin of Life (1974),” J. Oró, S. L. Miller, C. Ponnamperuma, and R. S. Young, eds., Vol. II, pp. 301–308, Reidel, Dordrecht, Holland and Boston.Google Scholar
  115. Stephen-Sherwood, E., Oro, J., and Kimball, A. P., 1971, Science, 173: 446.PubMedGoogle Scholar
  116. Storch, H. H., Golumbic, M., and Anderson, R. B., 1951, “The Fischer Tropsch and Related Synthesis,” Wiley, New York.Google Scholar
  117. Studier, M. H., Hayatsu, R., and Anders, E., 1968, Geochem. Cosmochim. Acta, 32: 151.Google Scholar
  118. Subbaraman, A. S., Kazi, Z. A., and Choughuley, A. S. U., 1972, Indian J. Biochem. Biophys., 9: 268.PubMedGoogle Scholar
  119. Subbaraman, A. S., Kazi, Z. A., and Choughuley, A. S. U., 1979, Indian J. Biochem. Biophys., 16: 253.PubMedGoogle Scholar
  120. Subbaraman, A. S., Kazi, Z. A., Choughuley, A. S. U., and Chadha, M. S., 1980, Origins Life, 10: 343.Google Scholar
  121. Szutka, A., 1964, Nature, 202: 1231.PubMedGoogle Scholar
  122. Terenin, A. M., 1959, in: “The Origin of Life on the Earth,” A. I. Oparin, ed., pp. 136–139, Pergamon Press, Oxford.Google Scholar
  123. Urey, N. C., 1952, “The Planets, Their Origin & Development,” Yale Univ. Press, New Haven.Google Scholar
  124. Voet, A. B., and Schwartz, A. W., 1982, Origins Life, 12: 45.Google Scholar
  125. Wanzlick, H. W., 1962, Angew. Chem. Int. Ed., 1: 75.Google Scholar
  126. Woeller, F., and Ponnamperuma, C., 1969, Icarus, 10: 386.Google Scholar
  127. Wolman, Y., Haverland, W. J., and Miller, S. L., 1972, Proc. Nat Acad. Sci. U.S., 69: 809.Google Scholar
  128. Yamada, H., and Okomato, T., 1972, Chem. Pharm. Bull., 20: 623.Google Scholar
  129. Yamagata, Y., and Mohri, T., 1982, Origins Life, 12: 41.Google Scholar
  130. Yang, C. C., and Oro, J., 1971, in: “Chemical Evolution and the Origin of Life,” pp. 152–167, North-Holland, Amsterdam.Google Scholar
  131. Zuckerman, B., Buhl, J. A., and Gottlieb, C. A., 1971, Astrophys J., 163: L 41.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. S. U. Choughuley
    • 1
  1. 1.Bio-Organic DivisionBhabha Atomic Research CentreTrombay, BombayIndia

Personalised recommendations