Phylogenic Status of Archaebacteria: Considerations Based on mRNA

  • Tairo Oshima


Based on the sequence homology of ribosomal 16SRNA, Fox et al. (1977) have proposed a new taxonomic kingdom called “archaebacteria.” They proposed that organisms can be divided into three major groups, eubacteria (cyanobacteria and bacteria except archaebacteris), archaebacteria, and eukaryotes. They speculate that archaebacteria may have been the dominant form of life in early Archaen times (Woese and Fox, 1977). At the present, four types of unusual microorganisms are classified as archaebacteria: methane producing anaerobic bacteria, extreme halophiles, extreme acid-thermophiles, and extremely thermophilic anaerobes (Woese et al., 1978; Zillig et al., 1981).


Direct Descendant Eukaryotic mRNA Extreme Halophile Halobacterium Halobium Sulfolobus Acidocaldarius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselbergs, F. A. M., Peters, W., Van Venrooij, W. J., and Cabooche, M., 1978, Eur. J. Biochem., 88: 483.PubMedCrossRefGoogle Scholar
  2. Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., and Woese, C. R., 1977, Proc. Nat. Acad. Sci. U.S., 74: 4537.CrossRefGoogle Scholar
  3. Gropalakrishna, Y., and Sarkar, N., 1982, Biochemistry, 21: 2724.CrossRefGoogle Scholar
  4. Hori, H., and Osawa, S., 1979, Proc. Nat. Acad. Sci. U.S., 76: 381.CrossRefGoogle Scholar
  5. Kessel, M., and Klink, F., 1980, Nature, 287: 250.PubMedCrossRefGoogle Scholar
  6. Kuchino, Y., Ihara, M., Yabusaki, Y., and Nishimura, S., 1982, Nature, 298: 684.PubMedCrossRefGoogle Scholar
  7. Margulis, L., 1981, “Symbiosis in Cell Evolution,” W. H. Freeman, San Francisco.Google Scholar
  8. Matheson, A. T., Moller, W., Amous, R., and Yaguchi, Y., 1980, in: “Ribosomes: Structure, Function and Genetics,” G. Chamblis et al., eds., pp. 297–332, University Park Press, Baltimore.Google Scholar
  9. Nakazato, H., Venkatesan, S., and Edomonds, M., 1975, Nature, 256: 144PubMedCrossRefGoogle Scholar
  10. Ohba, M., and Oshima, T., 1981, in “Origin of Life,” Y. Wolman, ed., pp. 543–549, D. Reidel, Dordrecht, Boston and London.Google Scholar
  11. Ohba, M., and Oshima, T., 1983, Origins Life, in press.Google Scholar
  12. Prangishvilli, D., Zillig, W., Gierl, A., Biesert, L., and Holz, I., 1982, Eur. J. Biochem., 122: 471.PubMedCrossRefGoogle Scholar
  13. Schopf, J. W., and Oehler, D. Z., 1976, Science, 193: 47.PubMedCrossRefGoogle Scholar
  14. Searcy, D. G., Stein, D. B., and Green, G. R., 1978, BioSystems, 10: 19.PubMedCrossRefGoogle Scholar
  15. Valen, L. M., and Mariorana, V. C., 1980, Nature, 287: 248.PubMedCrossRefGoogle Scholar
  16. Woese, C. R., and Fox, G. E., 1977, Proc. Nat. Acad. Sci. U.S., 74: 5088.CrossRefGoogle Scholar
  17. Woese, C. R., Magrum, L. J., and Fox, G. E., 1978, J. Mol. Evol., 11: 245.PubMedCrossRefGoogle Scholar
  18. Zillig, E., Tu, J., and Holz, I., 1981, Nature, 293: 85.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Tairo Oshima
    • 1
  1. 1.Mitsubishi-Kasei Institute of Life SciencesMachida, TokyoJapan

Personalised recommendations