On Protocells, Preprokaryotes, and Early Prokaryotes

  • Herrick Baltscheffsky
  • Jerzy Jurka


It has been well documented that chemical reactions occurring on the surface of the prebiotic Earth could have given large amounts of monomeric organic compounds necessary for the origin of life. Less clear is how activated monomers obtained from such compounds could have formed larger molecules, particularly those heteropolymers made from nucleotides and amino acids, the nucleic acids and proteins, which are essential components in all contemporary living organisms.


Molecular Evolution Translation Apparatus Membrane Boundary Triplet Code Stepwise Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltscheffsky, H., and Baltscheffsky, M., 1981, in: “Mitochondria and Microsomes,” C. P. Lee, G. Schatz, and G. Dallner, eds., pp. 519–540, Addison-Wesley, Boston.Google Scholar
  2. Brack, A., and Orgel, L. E., 1975, Nature, 256: 383.PubMedCrossRefGoogle Scholar
  3. Bridson, P. K., and Orgel, L. E., 1980, J. Mol. Biol., 144: 567.PubMedCrossRefGoogle Scholar
  4. Carter, Jr., C. S., and Krant, J., 1974, Proc. Nat. Acad. Sci. U.S., 71: 283.CrossRefGoogle Scholar
  5. Dose, K., and Zaki, L., 1971, Z. Naturforsch. 26b: 144.Google Scholar
  6. Eigen, M., 1971, Quart. Revs. Biophys., 4: 149.CrossRefGoogle Scholar
  7. Eigen, M., and Schuster, P., 1982, J. Mol. Evol., 19: 47.PubMedCrossRefGoogle Scholar
  8. Eigen, M., and Winkler-Oswatitsch, R., 1981, Naturwiss., 68: 282.PubMedCrossRefGoogle Scholar
  9. Follman, H., 1982, Naturwiss., 69: 75.CrossRefGoogle Scholar
  10. Fox, S. W., 1975, BioSystems, 7: 22.PubMedCrossRefGoogle Scholar
  11. Fox, S. W., 1981, Amer. Bio. Teacher, 43: 127.Google Scholar
  12. Fox, S. W., and Dose, K., 1977, “Molecular Evolution and the Origin of Life,” 2nd edn., Marcel Dekker, New York.Google Scholar
  13. Inoue, T., and Orgel, L. E., 1981, J. Amer. Chem. Soc., 103: 7666.CrossRefGoogle Scholar
  14. Inoue, T., and Orgel, L. E., 1982, J. Mol. Biol., 162: 201.PubMedCrossRefGoogle Scholar
  15. Inoue, T., and Orgel, L. E., 1983, Science, 219: 859.PubMedCrossRefGoogle Scholar
  16. Katchalsky, A., 1973, Naturwiss., 60: 215.CrossRefGoogle Scholar
  17. Kruger, K., Grabowski, P. J., Zang, A. J., Sands, J., Gottschling, D. E., and Cech, T. R., 1982, Cell, 31: 147.PubMedCrossRefGoogle Scholar
  18. Kuhn, H., and Waser, J., 1981, Angev. Chem. ( Engl. edn. ), 20: 500.CrossRefGoogle Scholar
  19. Kuhn, H., and Waser, J., 1982, Nature, 298: 585.PubMedCrossRefGoogle Scholar
  20. Lohrmann, R., Bridson, P. K., and Orgel, L. E., 1980, Science, 208: 1464.PubMedCrossRefGoogle Scholar
  21. Miller, S. L., and Orgel, L. E., 1974, “The Origins of Life,” Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  22. Oparin, A. I., 1938, “The Origin of Life,” MacMillan, New York.Google Scholar
  23. Orgel, L. E., 1968, J. Mol. Biol., 38: 381.PubMedCrossRefGoogle Scholar
  24. Orgel, L. E., 1972, Isr. J. Chem., 10: 287.Google Scholar
  25. Paecht-Horowitz, M., Berger, J.. and Katchalsky, A., 1970, Nature, 228: 636.PubMedCrossRefGoogle Scholar
  26. Schwartz, A. E., 1979, in: “Marine Organic Chemistry”, E. K. Omersma, and R. Dawson, eds., pp. 7–30, Elsevier, Amsterdam.Google Scholar
  27. Weiss, A., 1981, Angev. Chem. ( Engl. edn. ), 20: 850.CrossRefGoogle Scholar
  28. Yanagawa, H., and Egami, F., 1980, BioSystems, 12: 147.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Herrick Baltscheffsky
    • 1
  • Jerzy Jurka
    • 1
  1. 1.Department of Biochemistry, Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations