Advertisement

The Influence of Some Physico-Chemical Factors on Self-Organization in Prebiotic Systems

  • Mella Paecht-Horowitz

Abstract

Since Oparin (1924) came forth with his model for prebiotic synthesis, namely that simple organic substances were formed in an abiogenic form, and that the evolution of these substances has to lead to the formation of protein-like compounds and then to colloid systems capable of gradually improving their internal organization by the operation of natural selection, the interest in this sort of reactions grew steadily. Many hypotheses were presented, many experiments were planned and carried out; the picture became fuller and fuller, though it is still far from being complete. The subjects which evolved, and seem to be important for the understanding of the formation of prebiotic systems, are so far: Synthesis of organic molecules out of the gas mixture of the then existing earth atmosphere, polymerization of these molecules to biopolymers*, self-organization of these biopolymers to cell-like particles in which certain prebiotic reactions could have taken place and finally the development of these particles into self-reproducing units, a process which is considered possible by living organisms only.

Keywords

Prebiotic Synthesis Polyamino Acid Prebiotic Evolution Apparent Adsorption Poly Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balscheffsky, H., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 481, D. Reidel, Dordrecht, Holland.Google Scholar
  2. Bénard, H., 1900, Rev. Gen. Sci. Pures Appt., 11: 1309.Google Scholar
  3. Bénard, H., 1901, Ana. Chico. Phys., 23: 62.Google Scholar
  4. Bernal, J. D., 1951, “The Physical Basis of Life,” Routledge and Kegan Paul, London.Google Scholar
  5. Bondy, S., and Harrington, M., 1979, Science, 203: 1243.PubMedCrossRefGoogle Scholar
  6. Brack, A., and Orgel, L. E., 1975, Nature, 256: 383.PubMedCrossRefGoogle Scholar
  7. Brack, A., and Spach, G., 1979, J. Mol. Evol., 13: 35.PubMedCrossRefGoogle Scholar
  8. Brack, A., and Spach, G., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 487, D. Reidel, Dordrecht, Holland.Google Scholar
  9. Bungerberg de Yong, H., 1937, Koll. Zeitschr., 80: 221.CrossRefGoogle Scholar
  10. Cairns-Smith, A. G., 1971, “The Life Puzzle,” p. 118, Oliver and Boyd, London.Google Scholar
  11. Calvin, M., 1974, Angew. Chem. Intern. Ed., 121.Google Scholar
  12. Coyne, L. M., Lawless, J., Lehav, N., Sutton, S., and Sweeney, M., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 115, D. Reidel, Dordrecht, Holland.Google Scholar
  13. Eirich, F. R., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 285, D. Reidel, Dordrecht, Holland.Google Scholar
  14. Evreinova, T. N., Pagosova, P., Tsukawara, T., and Lapinova, T., 1962, Nauch. Dokl, Vyssh, Shk., 1: 159.Google Scholar
  15. Ferris, J. P., 1979, Science, 203: 1135.PubMedCrossRefGoogle Scholar
  16. Ferris, J. P., Alwis, K. W., Edelson, E. H., Mount, N., and Hagan, Jr., W. J., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 125, D. Reidel, Dordrecht, Holland.Google Scholar
  17. Fox, S. W., 1978, “The Nature of Life, XIIIth Nobel Conference,” H. Heidcamp, ed., p. 23, University Park Press, Baltimore.Google Scholar
  18. Fox, S. W., 1978a, “The Nature of Life, XIIIth Nobel Conference,” H. Heidcamp, ed., p. 28, University Park Press, Baltimore.Google Scholar
  19. Fox, S. W., Harada, K., and Kendrick, J., 1959, Science, 129: 1221.PubMedCrossRefGoogle Scholar
  20. Friebele, E., Shimoyama, A., and Ponnamperuma, C., 1981, Proc. Of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 263, D. Reidel, Dordrecht, Holland.Google Scholar
  21. Greenland, D. J., Laby, R. H., and Quirk, J. P., 1965, Proc. Faraday Soc., 61: 2013.CrossRefGoogle Scholar
  22. Hsu, Sh. H., 1977, Ph.D. Dissertation, Polytechnic Inst., New York.Google Scholar
  23. Jackson, T. A., 1971, Experientia, 27: 242.PubMedCrossRefGoogle Scholar
  24. Kim, Y. H., Tishbee, A., and Gilav., E., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 331, D. Reidel, Dordrecht, Holland.Google Scholar
  25. Lewinsohn, R., Paecht-Horowitz, M., and Katchalsky, A., 1967, Biochim. Biophys. Acta, 140: 24.Google Scholar
  26. Mathews, C. N., and Moser, R. E., 1966, Proc. Nat. Acad. Sci. U.S., 56: 1087.Google Scholar
  27. Mullins, Jr., D. W., and Lacey, Jr., J. C., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 209, D. Reidel, Dordrecht, Holland.Google Scholar
  28. Oparin, A. I., 1924, “Proiskhozdeniye zhizmi” (“The Origin of Life”), Izdatel’stov “Moskovskiy Rabochly,” Moscow.Google Scholar
  29. Oparin, A. I., Serebrovskaya, K., Vasilyeva, N., and Balayevskaya, T., 1964, Dok. Acad. Nauk, SSSR, 154: 471.Google Scholar
  30. Paecht-Horowitz, M., 1977, BioSystems, 9: 93.PubMedCrossRefGoogle Scholar
  31. Paecht-Horowitz, M., 1978, Proc. of the 2nd ISSOL Meeting on Origin of Life, H. Noda, ed., p. 289, Center for Academic Publications Japan, Tokyo.Google Scholar
  32. Paecht-Horowitz, M., 1978a, J. Mol. Evol., 11: 101.PubMedCrossRefGoogle Scholar
  33. Paecht-Horowitz, M., Berger, J. D., and Katchalsky, A., 1970, Nature, 228: 638.CrossRefGoogle Scholar
  34. Paecht-Horowitz, M., and Katchalsky, A., 1967, Biochim. Biophys. Acta, 140: 4.Google Scholar
  35. Poland, D., and Sheraga, H. A., 1967, “Poly-a-amino Acids,” G. Fasman, ed., p. 481, Marcel Dekker, New York.Google Scholar
  36. Reiser, H. J.-P, 1974, “Peptides, Polypeptides, and Proteins,” E. R. Blout et al., ed., p. 621, Wiley-Interscience, New York.Google Scholar
  37. Rishpon, J., O’Hara, P. J., Lahav, N., and Lawless, J. G., 1982, J. Mol. Evol., 18: 179.PubMedCrossRefGoogle Scholar
  38. Root-Bernstein, R. S., 1982, J. Theor. Biol., 94: 885.PubMedCrossRefGoogle Scholar
  39. Segel, L. A., 1966, “Non-Equilibrium Thermodynamics, Variational Techniques and Stability,” R. J. Donnelly et al., ed., p. 165, University of Chicago Press, Chicago.Google Scholar
  40. Siesskind, O., 1960, Comp. Rend., 250: 2228.Google Scholar
  41. Simionescu, C. I., and Denes, F., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 255, D. Reidel, Dordrecht, Holland.Google Scholar
  42. Simionescu, C. I., Denes, F., and Totlin, M., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 263, D. Reidel, Dordrecht, Holland.Google Scholar
  43. Yanagawa, H., Kobayashi, Y., and Egami, F., 1980, J. Biochem. 87: 855.PubMedGoogle Scholar
  44. Yanagawa, H., and Egami, F., 1981, Proc. of the 3rd ISSOL Meeting on Origin of Life, Y. Wolman, ed., p. 309, D. Reidel, Dordrecht, Holland.Google Scholar
  45. Young, R. S., 1965, “The Origins of Prebiological Systems,” S. W. Fox, ed., p. 347, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Mella Paecht-Horowitz
    • 1
  1. 1.The Seagram Centre for Soil and Water SciencesThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations