Self-Organizing Molecular Systems

  • Jerome J. Wolken


Pasteur in 1860 showed by an ingenious set of experiments that life could only come from existing life. This dispelled for a time belief in the spontaneous generation of life, but, in 1878, Pasteur wrote: “I have been looking for it (spontaneous generation [author’s Italics]) for 20 years but I have not yet found it, although I do not think it is an impossibility.” In this same context, Charles Darwin, in a letter to Joseph Hooker in 1871 that is widely quoted wrote:

It is often said that all the conditions for the first production of living organisms are now present, which could ever have been present. But if (and- oh, what a big if) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, heat, electricity, etc., present, that a protein compound was chemically formed ready to undergo still more complex changes,...

Darwin and Pasteur in their own ways dwelled on the possibility that life occurred as a spontaneous event when the physical and chemical conditions were right.


Liquid Crystal Nematic Liquid Crystal Cholesteric Liquid Crystal Liquid Crystal Cell Liquid Crystal Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernal, J. D., 1933, Trans. Faraday Soc., 29:1082.Google Scholar
  2. Bernal, J. D., 1951, “The Physical Basis of Life,” Routledge & Kegan Paul, London.Google Scholar
  3. Bernal, J. D., 1967, “The Origin of Life,” World Publishing Company, Cleveland, Ohio.Google Scholar
  4. Blum, H. F., 1968, “Time’s Arrow and Evolution,” 3rd edn., Princeton University Press, Princeton, New Jersey.Google Scholar
  5. Brady, G. W., 1973, J. Chem. Phys., 58: 3542.CrossRefGoogle Scholar
  6. Brady, G. W., 1974, Acc. Chem. Res., 7: 174.CrossRefGoogle Scholar
  7. Bretscher, M. S., 1973, Science, 181: 622.PubMedCrossRefGoogle Scholar
  8. Brown, G. H., 1977, J. Coll. Inter. Sci., 58: 534.CrossRefGoogle Scholar
  9. Brown, G. H., and Mishra, R., 1971, J. Agr. Food Chem., 19: 645.CrossRefGoogle Scholar
  10. Brown, G. H., and Wolken, J. J., 1979, “Liquid Crystals and Biological Structures,” Academic Press, New York.Google Scholar
  11. Bungenberg de Jong, H. G., 1936, “La Coacervation,” Hermann, Paris.Google Scholar
  12. Cairns-Smith, A. G., 1971, “The Life Puzzle,” Oliver & Boyd, Edinburgh.Google Scholar
  13. Cairns-Smith, A. G., 1982, “Genetic Takeover and the Mineral Origins of Life,” Cambridge University Press, Cambridge.Google Scholar
  14. Calvin, M., 1969, “Chemical Evolution,” Oxford University Press, London and New York.Google Scholar
  15. Calvin, M., 1975, Amer. Sci., 63: 169.PubMedGoogle Scholar
  16. Capaldi, R. A., Kamap, H., and Hunter, D. R., 1973, Biochem. Biophys. Res. Commun., 55: 655.PubMedCrossRefGoogle Scholar
  17. Chapman, D., 1979, in: “Liquid Crystals,” F. D. Saeva, ed., pp. 305–334, Marcel Dekker, New York.Google Scholar
  18. Crick, F., 1981, “Life Itself: Its Origins and Nature,” Simon and Schuster, New York.Google Scholar
  19. Danielli, J. F., and Dayson, H., 1935, J. Cell Comp. Physiol., 5: 495.CrossRefGoogle Scholar
  20. Darwin, F., ed., 1892, “The Autobiography of Charles Darwin and Selected Letters,” Appletin, New York (republished by Dover, New York, 1958, p. 220.Google Scholar
  21. Dauvillier, A., 1965, “The Photochemical Origin of Life,” Academic Press, New York.Google Scholar
  22. Dupre’, D. B., and Samulski, E. T., 1979, in: “Liquid Crystals: The Fourth State of Matter,” F. D. Saeva, ed., pp. 203–247, Marcel Dekker, New York.Google Scholar
  23. Eigen, M., and Schuster, P., 1979, “The Hypercycle: A Principle of Natural Self-Organization,” Springer-Verlag, New York.Google Scholar
  24. Eisenburg, M., and McLaughlin, S., 1976, Bioscience, 26: 436.CrossRefGoogle Scholar
  25. Fergason, J. L., and Brown, G. H., 1968, J. Am. Oil Chem. Soc., 45: 120.PubMedCrossRefGoogle Scholar
  26. Filas, R. J., 1977, J. Phys., 39: 49.Google Scholar
  27. Fox, S. W., 1965a, Nature, 205: 328.PubMedCrossRefGoogle Scholar
  28. Fox. S. W., ed., 1965b, “The Origins of Prebiological Systems,” Academic Press, New York.Google Scholar
  29. Fox, S. W., 1973, Naturwiss., 60: 359.PubMedCrossRefGoogle Scholar
  30. Fox, S. W., 1980a, Naturwiss., 67: 378.PubMedCrossRefGoogle Scholar
  31. Fox, S. W., 1980b, Comp. Biochem. Physiol., 67: 423.CrossRefGoogle Scholar
  32. Fox, S. W., and Dose, K., 1972, “Molecular Evolution and the Origin of Life,” Freeman, San Francisco, and in revised edition ( 1977 ) Marcel Dekker, New Yori.Google Scholar
  33. Fox, S. W., Harada, K., Woods, K. R., and Windsor, C. R., 1963, Arch. Biochem. Biophys., 102: 439.PubMedCrossRefGoogle Scholar
  34. Gladyshev, G. P., and Khasanov, M. M., 1981, J. Theor. Biol., 90: 191.PubMedCrossRefGoogle Scholar
  35. Haldane, J. B. S., 1929, Rationalist Annual, 3 (Reprinted in Bernal, 1967, pp. 242–249 ).Google Scholar
  36. Haldane, J. B. S., 1954, “The Biochemistry of Genetics,” Macmillan, New York.Google Scholar
  37. Haldane, J. B. S., 1966, “The Causes of Evolution,” Cornell University Press, Ithaca, New York.Google Scholar
  38. Harada, K., 1971, in: “Chemical Evolution and Origins of Life,” R. Buvet, and C. Ponnamperuma, eds., pp. 71–79, American Elsevier, New York.Google Scholar
  39. Journeaux, R., and Viovy, R., 1978, Photochem. Photobiol., 28: 243.CrossRefGoogle Scholar
  40. Ke, B., and Vernon, L., 1971, in: “Photochromism,” G. H. Brown, ed., p. 687, Wiley (Interscience), New York.Google Scholar
  41. Kenyon, D. H., and Steinman, G., 1969, “Biochemical Predestination,” McGraw-Hill, New York.Google Scholar
  42. Keosian, J., 1964, “The Origin of Life,” Van Nostrand-Reinhold, New York.Google Scholar
  43. King, L. J., 1969, Bioscience, 19: 505.CrossRefGoogle Scholar
  44. Leduc, S., 1911, “Mechanisms of Life,” London.Google Scholar
  45. Lee, A. G., 1975, Endeavour, 34: 67.PubMedCrossRefGoogle Scholar
  46. Lehmann, O., 1904, “Fussige Kristalle, sowie Plästizitat von Kristallen im Allgemeinin, Moleculare Umlagerungen und Aggregatzumstandsänderugen,” Englemann, Leipzig.Google Scholar
  47. Lehmann, O., 1922, in: “Handbuch der biologischen Arbeitsmethoden,” Physik-Chem. Methoden, Untersuchung des Verhaltens gelöster Stoffe; E. Arberhalden, ed., AB. III, Teil A2, pp. 123–352, Urban and Schwarzenberg, Munich.Google Scholar
  48. Litster, J. D., and Birgeneau, R. J., 1982, Physics Today, 35: 1.Google Scholar
  49. Meyers, D. I., and Burger, M. M. 1977, Chemistry, 50: 36.Google Scholar
  50. Miller, S. L., 1953, Science, 117: 528.PubMedCrossRefGoogle Scholar
  51. Miller, S. L., 1957, Biochim. Biophys. Acta., 23: 480.PubMedCrossRefGoogle Scholar
  52. Monod, J., 1971, “Chance and Necessity,” Alfred A. Knopf, New York.Google Scholar
  53. Morowitz, H. J., 1967, Progr. Theor. Biol., 1: 38.Google Scholar
  54. Morowitz, H. J., 1981, BioSystems, 14: 41.PubMedCrossRefGoogle Scholar
  55. Needham, J., 1968, “Order and Life,” MIT Press, Cambridge, Massachusetts.Google Scholar
  56. Oldfield, E., 1973, Science, 180: 982.PubMedCrossRefGoogle Scholar
  57. Oparin, A. I., 1938, “The Origin of Life,” S. Morgulis, transl.Google Scholar
  58. Macmillan, New York (2nd edn., Dover, New York, 1953 ).Google Scholar
  59. Oparin, A. I., 1968, “Genesis and Evolutionary Development of Life,” Academic Press, New York.Google Scholar
  60. Pasteur, L., 1878, in: “Collected Works of Pasteur (Oeuvres de Pasteur),” by Vallery-Radot (1922–1939), Vols. I and II, Masson, Paris.Google Scholar
  61. Pauling, L., 1960, “The Nature of the Chemical Bond,” 3rd edn., Cornell University Press, Ithaca, New York.Google Scholar
  62. Ponnamperuma, C., 1965, in: “The Origins of Prebiological Systems,” S. W. Fox, ec., pp. 221–242, Academic Press, New York.Google Scholar
  63. Ponnamperuma, C., 1972, “The Origins of Life,” Dutton, New York.Google Scholar
  64. Prigogine, I., 1980, “From Being to Becoming,” W. H. Freeman, San Francisco.Google Scholar
  65. Rao, M., Odom, G. D., and Oro, J., 1980, J. Mol. Evol., 15: 317.PubMedCrossRefGoogle Scholar
  66. Reinitzer, F. O., 1888, Monastsch. Chem., 9: 421.CrossRefGoogle Scholar
  67. Rinne, F., 1933, Trans. Faraday Soc., 29: 1016.CrossRefGoogle Scholar
  68. Robinson, C., 1956, Trans. Faraday Soc., 52: 571.CrossRefGoogle Scholar
  69. Robinson, C., 1958, Trans. Faraday Soc., 54: 29.Google Scholar
  70. Robinson, C., 1961, Tetrahedron, 13: 219.CrossRefGoogle Scholar
  71. Robinson, C., 1966, Mol. Cryst. Liq. Cryst., 1: 467.CrossRefGoogle Scholar
  72. Serebrovskaya, I., 1971, in: “Chemical Evolution and the Origin of Life,” R. Buvet, and C. Ponnamperuma, eds., pp. 297–306, American Elsevier, New York.Google Scholar
  73. Singer, S. J., and Nicholson, G. L., 1972, Science, 175: 720.PubMedCrossRefGoogle Scholar
  74. Vanderkooi, G., and Green, D. E., 1971, Bioscience, 21: 409.CrossRefGoogle Scholar
  75. Wald, G., 1952, in: “Modern Trends in Physiology and Biochemistry,” E. S. G. Barron, ed., pp. 337–376, Academic Press, New York.Google Scholar
  76. Wald, G., 1964, Proc. Nat. Acad. Sci. U.S., 52: 595.CrossRefGoogle Scholar
  77. Wald, G., 1970, in: “Miami Winter Symposia,” pp. 1–32, North-Holland, Amsterdam.Google Scholar
  78. Welch, G. R., Somogyi, B., and Damjanavich, S., 1982, Prog. Biophys. Molec. Biol., 39: 109.CrossRefGoogle Scholar
  79. Wolken, J. J., 1966, J. Am. Oil. Chem. Soc., 43: 271.PubMedCrossRefGoogle Scholar
  80. Wolken, J. J., 1967, “Euglena: An Organism for Biochemical and Biophysical Studies,” 2nd rev. edn., Appleton-Century-Crofts, New York.Google Scholar
  81. Wolken, J. J., 1975, “Photoprocesses, Protoreceptors and Evolution,” Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jerome J. Wolken
    • 1
  1. 1.Mellon InstituteCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations