Insulin Regulation of Nuclear Envelope Functions: Relationship to mRNA Metabolism

  • I. D. Goldfine
  • F. Purrello
  • R. Vigneri
Part of the Biochemical Endocrinology book series (BIOEND, volume 1)


Insulin is a major anabolic hormone for most mammalian species. The hormonal potency of insulin results, to a large extent, from its ability to regulate target cells at a variety of cellular sites. The effects of insulin on membrane transport, enzyme activity, and protein synthesis have been studied extensively. Most likely many of these effects result from the direct interaction of insulin with its plasma membrane receptor. Insulin also regulates nuclear functions such as DNA and RNA synthesis, but how insulin influences these processes is unknown. The presence of specific binding sites for insulin on nuclei and nuclear envelopes has been documented and characterized. These binding sites have biochemical characteristics that are different from insulin binding sites on the plasma membrane. Moreover, direct in vitro effects of insulin on messenger RNA (mRNA) metabolism have now been reported. These effects include: (1) stimula- tion of mRNA efflux from intact nuclei; (2) stimulation of nuclear envelope nucleoside triphosphatase (NTPase), the enzyme that regulates mRNA efflux; and (3) inhibition of 32P incorporation into nuclear envelopes. Thus, significant insight is now being gained concerning the actions of insulin on nuclear function.


Nuclear Envelope Nuclear Membrane Nuclear Pore Complex Insulin Binding Orotic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agutter, P. S., McCaldin, B., and McArdle, H. J., 1979a, Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins, Biochem. J. 182:811.PubMedGoogle Scholar
  2. Agutter, P. S., Cockrill, J. B., Lavine, J. E., McCaldin, B., and Sim, R. B., 1979b, Properties of mammalian nuclearenvelope nucleoside triphosphatase, Biochem. J. 181:647.PubMedGoogle Scholar
  3. Bergeron, J. J. M., Evans, W. H., and Geschwind, I. I., 1973, Insulin binding to rat liver Golgi fraction, J. Cell Biol. 59:771.PubMedCrossRefGoogle Scholar
  4. Bolander, F. F. Jr., Nicholas, K. R., Van Wyk, J. J., and Topper, Y. J., 1981, Insulin is essential for accumula-tion of casein mRNA in mouse mammary epithelial cells, Proc. Natl. Acad. Sci. USA 78:5682.PubMedCrossRefGoogle Scholar
  5. Brisson-Lougarre, A., and Blum, C. J., 1979, Sites de liaison nucléaire á l’insuline dans les noyaux isolés de thyoïde bovine, C. R. Acad. Sci. (D) (Paris) 289:129.Google Scholar
  6. Brisson-Lougarre, A., and Blum, C. J., 1980, Spécificité et reversibilité de la liaison de l’insuline aux noyaux isolés thyroidïens, C. R. Acad. Sci. (D) (Paris) 209:889.Google Scholar
  7. Bucher, N. L. R., and Weir, G. C., 1976, Insulin, glucagon, liver regeneration, and DNA synthesis. Metab. Clin. Exp. 25:1423.PubMedCrossRefGoogle Scholar
  8. Chochinov, R. H., and Daughaday, W. H., 1976, Current concepts of somatomedin and other biologically related growth factors, Diabetes 25:994.PubMedCrossRefGoogle Scholar
  9. Clawson, G. A.r James, J., Woo, C. H., Friend, D. S., Moody, D., and Smuckler, E. A., 1980, Pertinence of nuclear envelope nucleoside triphosphatase activity of ribonucleic acid transport, Biochemistry, 19:2748.PubMedCrossRefGoogle Scholar
  10. Feldherr, C. M., 1972, Structure and function of the nuclear envelope. Adv. Cell and Mol. Biol. 2:273.Google Scholar
  11. Franke, W. W., 1974, Structure, biochemistry, and functions of the nuclear envelope, in: “International Review of Cytology”, G. H. Bourne, and J. F. Danielli, eds., p. 71, Academic Press, New York.Google Scholar
  12. Freychet, P., Roth, J., and Neville, D. M. Jr., 1971, Insulin receptors in the liver: specific binding of (125I) insulin to the plasma membrane and its relation to insulin bioactivity, Proc. Natl. Acad. Sci. USA 68:1833.PubMedCrossRefGoogle Scholar
  13. Gey, G. O., and Thalhimer, W. J., 1924, Observations on the effects of insulin introduced into the medium of tissue cultures, J. Am. Med. Assoc. 82:1609.CrossRefGoogle Scholar
  14. Goidl, J. A., 1979, Insulin binding to isolated liver nuclei from obese and lean mice, Biochemistry 18:3674.PubMedCrossRefGoogle Scholar
  15. Goldfine, I. D., 1978a, The insulin receptor, in: “Receptors in Pharmacology”, J. R. Smythies and R. J. Bradley, eds., p. 335, Marcel Dekker, New York.Google Scholar
  16. Goldfine, I. D., 1978b, Insulin receptors and the site of action of insulin, Life Sci. 23:2639.PubMedCrossRefGoogle Scholar
  17. Goldfine, I. D., and Smith, G. J., 1976, Binding of insulin to isolated nuclei, Proc. Natl. Acad. Sci. USA 73:1427.PubMedCrossRefGoogle Scholar
  18. Goldfine, I. D., Vigneri, R., Cohen, D., and Pliam, N. B., 1977, Intracellular binding sites for insulin are immunologically distinct from those on the plasma membrane, Nature 269:698.PubMedCrossRefGoogle Scholar
  19. Hansen, R. J., and Pilkis, S. J., 1970, Effect of insulin on the synthesis in vitro of hexokinase in rat epididymal adipose tissue, Endocrinology 86:57.PubMedCrossRefGoogle Scholar
  20. Hansen, R. J., Pilkis, S. J., and Krahl, M. E., 1967, Properties of adaptive hexokinase isozymes of the rat, Endocrinology 81:1397.CrossRefGoogle Scholar
  21. Harris, J. R., and Agutter, P. S., 1976, The isolation and characterization of the nuclear envelope, in: “Biochemical Analysis of Membranes”, A. H. Maddy, ed., p. 132, John Wiley, New York.Google Scholar
  22. Hill, R. E., Lee, K.-L., and Kenny, F. T., 1981, Effects of insulin on messenger RNA activities in rat liver, J. Biol. Chem. 256:1510.PubMedGoogle Scholar
  23. Horvat, A., 1978, Insulin binding sites on rat liver nuclear membranes: biochemical and imœunofluorescent studies, J. Cell Physiol. 97:37.PubMedCrossRefGoogle Scholar
  24. Horvat, A., Li, E., and Katsoyannis, P. G., 1975, Cellular binding sites for insulin in rat liver, Biochim. Biophys. Acta 382:609.PubMedCrossRefGoogle Scholar
  25. Ishikawa, K., Sato-Odani, S., and Ogata, K., 1978, The role of ATP in the transport of rapidly-labeled KRA from isolated nuclei of rat liver in vitro, Biochim. Biophys. Acta. 521:650.PubMedGoogle Scholar
  26. Kashnig, D. M., and Kasper, C. B., 1969, Isolation, morphology, and composition of the nuclear membrane from rat liver, J. Biol, Chem. 244:3786.Google Scholar
  27. Koontz, J. W., and Ivahashi, M., 1980, Insulin as a potent, specific growth factor in a rat hepatoma cell line, Science 211:947.CrossRefGoogle Scholar
  28. Korc, M., Iwamoto, Y., Sankaran, H., Williams, J. A., and Goldfine, I. D., 1981a, Insulin action in pancreatic acini from streptozotocin-treated rats. I. Stimulation of protein synthesis, Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3):G56.PubMedGoogle Scholar
  29. Korc, M., Owerbach, D., Quinto, C., and Rutter, W. J., 1981b, Pancreatic islet-acinar cell interaction: amylase messen-ger RNA levels are determined by insulin, Science 213:351.PubMedCrossRefGoogle Scholar
  30. Krahl, M. E., 1974, Endocrine function of the pancreas, Annu. Rev. Physiol. 36:331.PubMedCrossRefGoogle Scholar
  31. Lam, K. S., and Kasper, O. B., 1979, Selective phosphorylation of a nuclear envelope polypeptide by an endogenous protein kinase, Biochemistry 18:307.PubMedCrossRefGoogle Scholar
  32. Monneron, A., Blobel, G., and Palade, G. E., 1973, Fractionation of the nucleus by divalent cations. Isolation of nuclear membranes, J. Cell Biol. 55:104.CrossRefGoogle Scholar
  33. Morgan, C. R., and Bonner, J., 1970, Template activity of liver chromatin increased by in vitro administration of insulin, Proc. Natl. Acad. Sci. USA 65:1077.PubMedCrossRefGoogle Scholar
  34. Correlation of albumin production rates and albumin mRNA levels in livers of normal, diabetic, and insulin-treated diabetic rats, Proc. Natl. Acad. Sci. USA 75:5879.PubMedCrossRefGoogle Scholar
  35. Price, J. B. Jr., 1976, Insulin and glucagon as modifiers of DNA synthesis in the regenerating rat liver, Metab. Clin. Exp. 25:1427.PubMedCrossRefGoogle Scholar
  36. Pry, T. A., and Porter, J. W., 1981, Control of fatty acid synthetase mRNA levels in rat liver by insulin, glucagon and dibutyryl cyclic AMP, Biochem. Biophys. Res. Comm. 100:1002.PubMedCrossRefGoogle Scholar
  37. Purrello, F., Vigneri, R., Clawson, G. A., and Goldfine, I. D., 1982, Insulin stimulation of nucleoside triphosphatase activity in isolated nuclear envelopes, Science 216:1005.PubMedCrossRefGoogle Scholar
  38. Rechler, M. M., Podskalny, J. M., Goldfine, I. D., and Wells, C. A., 1974, DNA synthesis in human fibroblasts: stimula-tion by insulin and by nonsuppressible insulin-like activity (NSILA-S), J. Clin. Endocrinol. Metab. 39:512.PubMedCrossRefGoogle Scholar
  39. Richman, R. A., Claus, T. H., Pilkis, S. J., and Friedman, D. L., 1976, Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes, Proc. Natl. Acad. Sci. USA 73:3589.PubMedCrossRefGoogle Scholar
  40. Roy, A. K., Chatterjee, B., Prasad, M. S. K., and Unakar, J. J., 1980, Role of insulin in the regulation of the hepatic messenger RNA for alpha 2u-globulin in diabetic rats, J. Biol. Chem. 255:11614.PubMedGoogle Scholar
  41. Schumm, D. E., and Webb, T. E., 1978, Effect of adenosine 3’:5’monophosphate and guanosine 3’:5’-monophosphate on RNA release from isolated nuclei, J. Biol. Chem. 253:8513.PubMedGoogle Scholar
  42. Smith, G. L., and Temin, H. M., 1974, Purified multiplica-tion-stimulating activity from rat liver cell conditioned medium: comparison of biological activities with calf serum, insulin, and somatomedin, J. Cell Physiol. 84:181.PubMedCrossRefGoogle Scholar
  43. Söling, H. D., and Unger, K. O., 1972, The role of insulin in the regulation of -amylase synthesis in the rat pancreas, Eur. J. Clin. Invest. 2:199.PubMedCrossRefGoogle Scholar
  44. Spooner, P. M., Chernick, S. S., Garrison, M. M., and Scow, R. O., 1979, Insulin regulation of lipoprotein lipase activity and release in 3T3-L1 adipocytes. Separation and dependence of hormonal effects on hexose metabol-ism and synthesis of RNA and protein, J. Biol. Chem. 254:10021.PubMedGoogle Scholar
  45. Steer, R. C., Wilson, M. J., and Ahmed, K., 1979a, Protein phosphokinase activity of rat liver nuclear membrane, Exp. Cell Res. 119:403.PubMedCrossRefGoogle Scholar
  46. Steer, R. C., Wilson, M. J., and Ahmed, K., 1979b, Phosphoprotein phosphatase activity of rat liver nuclear membrane, Biochem. Biophys. Res. Commun. 89:1082.PubMedCrossRefGoogle Scholar
  47. Steiner, D. F., 1966, Insulin and the regulation of hepatic biosynthetic activity, Vitam. Horm. (NY) 24:1.Google Scholar
  48. Steiner, D. F., and King, J., 1964, Induced synthesis of hepatic uridine diphosphate glucose-glycogen glucosyltransferase after administration of insulin to alloxan-diabetic rats, J. Biol. Chem. 239:1292.PubMedGoogle Scholar
  49. Stockdale, F. E., and Topper, Y. J., 1966, The role of DNA synthesis and mitosis in hormone-dependent differentiation, Proc. Natl. Acad. Sci. USA 56:1283.PubMedCrossRefGoogle Scholar
  50. Terry, P. M., Banerjee, M. R., and Lui, R. M., 1977, Hormoneinducible casein messenger RNA in a serum-free organ culture of whole mammary gland, Proc. Natl. Acad. Sci. USA 74:2441.PubMedCrossRefGoogle Scholar
  51. Turkington, R. W., 1968, Hormone induced synthesis of DNA by mammary gland in vitro, Endocrinology 82:540.PubMedCrossRefGoogle Scholar
  52. Vigneri, R., Pliam, N. B., Cohen, D. C., Pezzino, V., Wong, K. Y., and Goldfine, I. D., 1978a, In vivo regulation of cell surface and intracellular insulin binding sites by insulin, J. Biol. Chem. 253:8192.PubMedGoogle Scholar
  53. Vigneri, R., Goldfine, I. D., Wong, K. Y., Smith, G. J., and Pezzino, V., 1978b, The nuclear envelope. The major site of insulin binding in rat liver nuclei, J. Biol. Chem. 253:2098.PubMedGoogle Scholar
  54. Weber, G., 1972, Integrative action of insulin at the molecular level, Isr. J. Med. Sci. 8:325.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • I. D. Goldfine
    • 1
    • 2
  • F. Purrello
    • 1
    • 2
  • R. Vigneri
    • 1
    • 2
  1. 1.Cell Biology Research Laboratory, Harold Brunn InstituteMount Zion Hospital and Medical CenterSan FranciscoUSA
  2. 2.Departments of Medicine, PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations