A Model System for Studying the Effects of Hormones on Lysosomal Polyphosphoinositide Metabolism

  • Mark A. Seyfred
  • Christine A. Collins
  • William W. Wells
Part of the Biochemical Endocrinology book series (BIOEND, volume 1)


Lysosomes, whose functions involve receptor mediated endocytosis, phagosome-lysosome fusion, exocytosis and autophagy, are generally believed to be under the influence of various extracellular stimuli. Rapid morphological changes of lysosomes are observed in response to these stimuli suggesting that a mechanism exists to signal primary lysosomes to participate in subsequent physiological events. Lysosomes from livers of starved rats (DeDuve, 1969) and those from livers perfused with glucagon or cAMP (Ashford and Porter, 1962; Deter and DeDuve, 1967; Mortimore et al., 1978; Saito and Ogawa, 1974) rapidly undergo remarkable structural transformations associated with autophagy. The stimulation of lysosomal membrane rupture under standard homogenization procedures is attributed to increased volume of the resulting autophagolysosomes. In our laboratory (Schroeder et al., 1974), it was observed that liver lysosomes from normal chickens exhibited a significant diurnal variation in fragility, suggesting dietary and hormonal influences on this process. We became interested in the possibility that lysosomal membrane protein phosphorylation/dephosphorylation reactions may be under hormonal regulation and might result in altered membrane function.


High Performance Liquid Chromatography Phosphatidylinositol Kinase Ammonium Formate Lysosomal Membrane Lysosomal Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., Akhtar, R. A., and Smith, J. P., 1978, Studies on the role of triphosphoinositide in cholinergic muscarinic and α-adrenergic receptors function of iris smooth muscle, in: “Cylitols and Phosphoinositides,” W. W. Wells, F. Eisenberg Jr., eds., pp. 121–143, Academic Press, New York.Google Scholar
  2. Allan, D., and Michell, R. H., 1978, A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human rabbit erythrocytes, Biochim. Biophys. Acta, 508:277.PubMedCrossRefGoogle Scholar
  3. Ames, B. N., 1966, Assay of inorganic phosphate, total phosphate and phosphatases, Meth. Enzymol., 8:115.CrossRefGoogle Scholar
  4. Aronson, N. N., Jr. and Touster, O., 1974, Isolation of rat liver plasma membrane fragments in isotonic sucrose, Meth. Enzymol., 31:90.PubMedCrossRefGoogle Scholar
  5. Ashford, T. P., and Porter, K. R., 1962, Cytoplasmic components in hepatic cell lysosomes, J. Cell Biol., 12:198.PubMedCrossRefGoogle Scholar
  6. Buckley, J. T., and Hawthorne, J. N., 1972, Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding, J. Biol. Chem., 247:7218.PubMedGoogle Scholar
  7. Collins, C. A., and Wells, W. W., 1982, Characterization of endogenous protein phosphorylation in isolated rat liver lysosomes, J. Biol. Chem., 257:827.PubMedGoogle Scholar
  8. Collins, C. A., and Wells, W. W., 1983, Identification of phosphatidylinositol kinase in rat liver lysosomal membranes, J. Biol. Chem., 258:2130.PubMedGoogle Scholar
  9. DeDuve, C., 1969, The lysosome in retrospect, in: “Lysosomes in Biology and Pathology,” J. T. Dingle, H. B. Fell, eds., pp. 3–40, North-Holland Publishing Co., Amsterdam.Google Scholar
  10. Deter, R. L., and DeDuve, C., 1967, Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes, J. Cell. Biol., 33:437.PubMedCrossRefGoogle Scholar
  11. Dittmer, J. C., and Wells, M. A., 1969, Determination of individual phospholipids by selective hydrolysis, Meth. Enzymol. 14:516.Google Scholar
  12. Downes, C. P., Mussat, M. D., and Michell, R. H., 1982, The inositol triphosphate phosphomonesterase of the human erythrocyte membrane, Biochem. J., 203:169.PubMedGoogle Scholar
  13. Fleischer, B., 1974, Isolation and characterization of golgi apparatus and membranes from rat liver, Meth. Enzymol., 31:180.PubMedCrossRefGoogle Scholar
  14. Fleischer, S., and Fleischer, B., 1967, Assay of DPNH or succinate-cytochrome c reductase activity, Meth. Enzymol., 10:427.Google Scholar
  15. Glynn, I. M., and Chappell, J. B., 1964, A simple method for the preparation of 32P-labeled adenosine triphosphate of high specific activity, Biochem. J. 90:147.PubMedGoogle Scholar
  16. Griffin, H. D., and Hawthorne, J. N., 1978, Calcium-activated hydrolysis of phosphatidylmyo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-bisphosphate in guinea-pig synaptosomes, Biochem. J., 176:541.PubMedGoogle Scholar
  17. Harwood, J. L., and Hawthorne, J. N., 1969, The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues, Biochim. Biophys. Acta, 171:75.PubMedGoogle Scholar
  18. Hauser, G., Eichberg, J., and Gonzalez-Sastre, F., 1971, Regional distribution of polyphosphoinositides in rat brain, Biochim. Biophys. Acta, 248:87.PubMedGoogle Scholar
  19. Hayashi, F., Sokabe, M., and Amakawa, T., 1981, Carbamylcholineeffect on inositol phospholipids in acetylcholine receptor membrane from Narke japonica, Proc. Japan Acad., 57:Series B, 48.CrossRefGoogle Scholar
  20. Hayashi, F., Sokabe, M., Takagi, M., Hayashi, K., and Kishimoto, U., 1978, Calcium-sensitive univalent cation channel formed by lysotriphosphoinositide in bilayer lipid membranes, Biochim. Biophys. Acta, 510:305.PubMedCrossRefGoogle Scholar
  21. Henning, R., and Heidrich, H. G., 1974, Membrane lipids of rat liver lysosomes prepared by free-flow electrophoresis, Biochim. Biophys. Acta, 345:326.CrossRefGoogle Scholar
  22. Hill, R. L., and Bradshaw, R. A., 1969, Fumarase, Meth. Enzymol. 13:91.CrossRefGoogle Scholar
  23. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices, J. Biol. Chem., 203:967.PubMedGoogle Scholar
  24. Hostetler, K. Y., and Poorthuis, B. J. H. M., 1978, Acidic phospholipids and lysosomal bis(monoacylglycerl) phosphate synthesis: The role of phosphatidylinositol and lysophosphatidylglycerol, in: “Cyclitols and Phosphoinositides,” W. W. Wells, F. Eisenberg Jr., eds., pp. 585–597, Academic Press, New York.Google Scholar
  25. Kates, M., 1972, Mild alkaline deacylation of phosphatides and glycolipids, in: “Techniques of Lipidology: Isolation, Analysis and Identification of Lipids,” pp. 558–559, NorthHolland Publ. Co., Amsterdam.Google Scholar
  26. Kemp, P., Hubscher, G., Hawthorne, J. N., 1961, Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J., 79:193.PubMedGoogle Scholar
  27. Kirk, C. J., Creba, J. A., Downes, C. P., and Michell, R. H., 1981, Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function, Biochem. Soc. Transact., 9:377.Google Scholar
  28. Kurtz, J. W., and Wells, W. W., 1981, Induction of glucose-6phosphate dehydrogenase in primary cultures of adult rat hepatocytes. Requirement for insulin and dexamethasone, J. Biol. Chem., 256:10870.PubMedGoogle Scholar
  29. Lefebvre, Y. A., White, D. A., and Hawthorne, J. N., 1976, Diphosphoinositide metabolism in bovine adrenal medulla, Can. J. Biochem., 54:746.PubMedCrossRefGoogle Scholar
  30. Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Coffey, J. W., Fowler, S., and DeDuve, C., 1968, The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339, J. Cell. Biol., 37:482.PubMedCrossRefGoogle Scholar
  31. London, M., and Hudson, P. M., 1956, Purification and properties of solubolized uricase, Biochim. Biophys. Acta, 21:290.PubMedCrossRefGoogle Scholar
  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193:265.PubMedGoogle Scholar
  33. Michell, R. H., Harwood, J. L., Coleman, R., and Hawthorne, J. N., 1967, Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane, Biochim. Biophys. Acta, 144:649.PubMedGoogle Scholar
  34. Mortimore, G. E., Ward, W. F., and Schworer, C. M., 1978, Lysosomal processing of intracellular protein in rat liver and its general regulation by amino acids and insulin, in: “Protein turnover and lysosomal functions,” H. L. Segal, D. J. Doyle, eds., pp. 67–87, Academic Press, New York.Google Scholar
  35. Muller, T. W., and Kirshner, N., 1975, ATPase and phosphatidylinositol kinase activities of adrenal chromaffin vesicles, J. Neurochem., 24:1155.PubMedCrossRefGoogle Scholar
  36. Pertoft, H., Warmegard, B., and Hook, M., 1978, Heterogeneity of lysosomes originating from rat liver parenchymal cells, Biochem. J., 174:309.PubMedGoogle Scholar
  37. Phillips, J. H., 1973, Phosphatidylinositol kinase. A component of the chromaffin-granule membrane, Biochem. J., 136: 579.PubMedGoogle Scholar
  38. Reimann, E. M., Brostrom, C. O., Corbin, J. D., King, C. A., and Krebs, E. G., 1971, Separation of regulatory and catalytic subunits of the cyclic 3,’ 5’-adenosine monophosphatedependent protein kinase(s) of rabbit skeletal muscle, Biochem. Biophys. Res. Commun., 42:187.PubMedCrossRefGoogle Scholar
  39. Saito, T., and Ogawa, K., 1974, Lysosomal changes in rat hepatic parenchymal cells after glucagon administration, Acta Histochem. Cytochem., 7:1.CrossRefGoogle Scholar
  40. Schacht, J., 1981, Extraction and purification of polyphosphoinositides, Meth. Enzymol., 72:626.PubMedCrossRefGoogle Scholar
  41. Schroeder, H. R., Gauger, J. A., and Wells, W. W., 1976, On lysosomal fragility and induction of liver hexose-monophosphate dehydrogenases in the fasted-refed rat, Arch. Biochem. Biophys., 172:206.PubMedCrossRefGoogle Scholar
  42. Schroeder, H. R., Lawler, J. R., and Wells, W. W., 1974, Effect of dietary galactose on lysosomal enzymes in the chick, J. Nutr., 104:943.PubMedGoogle Scholar
  43. Seglen, P. O., 1976, Preparation of isolated rat liver cells, Meth. Cell Biol., 13:29.CrossRefGoogle Scholar
  44. Sellinger, O. Z., Beaufay, H., Jacques, P., Doyen, A., and DeDuve, C., 1960, Tissue fractionation studies 15. Intracellular distribution and properties of β-Galactosidase in rat liver, Biochem. J., 74:450.PubMedGoogle Scholar
  45. Shukla, S. D., and Hanahan, D. J., 1982, AGEC (Platelet Activating Factor) induced stimulation of rabbit platelets: Effects on phosphatidylinositol, di-and tri-phosphoinositides and phosphatidic acid metabolism, Biochem. Biophys. Res. Commun., 106:697.PubMedCrossRefGoogle Scholar
  46. Takenawa, T., and Nagai, Y., 1981, Purification of phosphatidylinositol-specific phospholipase C from rat liver, J. Biol. Chem., 256:6769.PubMedGoogle Scholar
  47. Takizawa, T., and Hayashi, K., 1980, Calorimetric study of Ca2 binding to triphosphoinositide, Rep. Prog. Polymer Physicsin Japan, 23:25.Google Scholar
  48. Wells, W. W., Collins, C. A., and Kurtz, J. W., 1981, Metabolic regulation of lysosome activity, in: “Lysosomes and Lysosomal Storage Diseases,” J. W. Callahan, J. A. Lowden, eds., pp. 17–30, Academic Press, New York.Google Scholar
  49. Wherrett, J. R., and Huterer, S., 1972, Enrichment of bis-(monoacylglyceryl) phosphate in lysosomes from rat liver, J. Biol. Chem., 247:4114.PubMedGoogle Scholar
  50. Zahlten, R. N., Hochberg, A. A., Stratman, F. W., and Lardy, H. A., 1972, Glucagon-stimulated phosphorylation of mitochondrial and lysosomal membranes of rat liver in vivo, Proc. Natl. Acad. Sci. USA, 69:800.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Mark A. Seyfred
    • 1
  • Christine A. Collins
    • 1
  • William W. Wells
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations