Calmodulin — A Receptor for Calcium Modulating Hormone Responsivity

  • A. R. Means
  • J. G. Chafouleas
Part of the Biochemical Endocrinology book series (BIOEND, volume 1)


In order to survive in a dynamic environment all living cells must be able to identify and respond to variation in specific extracellular signals. The action of peptide hormones on mammalian cells is a specific case in point. Target cells recognize the hormone through specific receptors on the outer surface of their plasma membrane. The binding of hormone to receptor initiates a series of rapid events which eventually translates this external signal into a specific cellular response mediated by a selective alteration of the intracellular metabolism. The mechanism by which the extracellular event is transduced to an intracellular event is still not totally understood. The effect of adrenergic agents on cAMP metabolism led Sutherland to propose that cAMP was the second messenger responsible for this transduction through the activation of a cAMP-dependent protein kinase. While this mechanism explains many hormonal events, it does not explain the studies of Hutson et al. (1976) and Cherrington et al. (1976), who demonstrated that cAMP metabolism or activation of cAMP-dependent protein kinase was not involved in the α-adrenergic activation of glycolysis and gluconeogenesis in rat liver.


Myosin Light Chain Kinase Rous Sarcoma Virus Cyclic Nucleotide Phosphodiesterase Microtubule Polymerization Mitotic Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., and Klee, C. B., 1981, Purification and characterization of smooth muscle myosin light chain kinase, J. Biol. Chem. 256:7501.PubMedGoogle Scholar
  2. Andersen, B., Osborn, M., and Weber, K., 1978, Specific visual-ization of the distribution of the calcium-dependent regu-latory protein of cyclic nucleotide phosphodiesterase (modulator protein) in tissue culture cells by immunofluorescence microscopy: mitosis and intercellular bridge, Eur. J. Cell Biol. 17:354.Google Scholar
  3. Anderson, J. M., and Cormier, M. J., 1978, Calcium-dependent regulator of NAD kinase in higher plants, Biochem. Biophys. Res. Commun. 84:595.PubMedCrossRefGoogle Scholar
  4. Assimacopoulos-Jeanenett, F. D., Blackmore, P. F., and Exton, J. H., 1977, Studies on -adrenergic activation of hepatic glucose output studies on role of calcium in -adrenergic activation of phosphorylase, J. Biol. Chem. 252:2662.Google Scholar
  5. Blackmore, P. F., El-Refai, M. F., Dehaye, J. -P., Strickland, W. G., Hughes, B. P., and Exton, J. H., 1981, Blockage of hepatic -adrenergic receptors and responses by chlorpromazine and trifluoperazine, FEBS. Letters 123:245.PubMedCrossRefGoogle Scholar
  6. Berridge, M. J., 1975, The interaction of cyclic nucleotides and calcium on the control of cellular activity, in: “Advances in Cyclic Nucleotide Research”, Vol. 6, P. Greengard and G. A. Robison, eds., p. 1, Raven Press, New York.Google Scholar
  7. Blumenthal, D. G., and Stull, J. T., 1980, Activation of skele-tal muscle myosin light chain kinase by calcium (2+) and calmodulin, Biochemistry 19:5608.PubMedCrossRefGoogle Scholar
  8. Bolton, A. E., and Hunter, W. M., 1973, The labeling of proteins to high specific radioactivities by conjugation to a 125Icontaining acylating agent, Biochem. J. 133:529.PubMedGoogle Scholar
  9. Borisy, G. G., Marcum, J. M., Olmstead, J. B., Murphy, D. B., and Johnson, K. A., 1975, Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro, Ann. N. Y. Acad. Sci. 253:107.PubMedCrossRefGoogle Scholar
  10. Bourguignon, L. Y. W., Tokuyasu, K. T., and Singer, S. J., 1978, The capping of lymphocytes and other cells studied by an improved method of immunofluorescence staining of frozen sections, J. Cell Physiol. 95:239.PubMedCrossRefGoogle Scholar
  11. Brinkley, B. R., and Cartwright, J., 1971, Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts, J. Cell Biol. 50:416.PubMedCrossRefGoogle Scholar
  12. Brinkley, B. R., Pepper, D. A., Cox, S. M., Fistel, S., Brenner, S. L., Wible, L. J., and Pardue, R. L., 1980, Character-istics of centriole-and kinetochore-associated microtubule assembly in mammalian cells, in: “Microtubules and Micro-tubule Inhibitors”, M. DeBrabander and J. DeMey, eds., p. 281, Amsterda, Elsevier.Google Scholar
  13. Brinkley, B. R., Fuller, G. M., and Highfield, D. P., 1975, Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluores-cence, Proc. Natl. Acad. Sci. USA 72:4981.PubMedCrossRefGoogle Scholar
  14. Brostrom, C. O., Brostrom, M. A., and Wolff, D. J., 1977, Cal-cium-dependent adenylate cyclase from rat cerebral cortex, J. Biol. Chem. 252:5677.PubMedGoogle Scholar
  15. Browning, M., Bennett, W., and Lynch, G., 1979, Phosphorylase kinase phosphorylates a brain protein which is influenced by repetitive synaptic activation, Nature 278:273.PubMedCrossRefGoogle Scholar
  16. Cande, W. Z., and Wolniak, S. M., 1978, Chromosome movement in lysed mitotic cells is inhibited by vanadate, J. Cell. Biol. 79:573.PubMedCrossRefGoogle Scholar
  17. Chafouleas, J. G., Bolton, W. E., Hidaka, H., Boyd, A. E. III, and Means, A. R., 1982, Calmodulin and the cell cycle: involvement in regulation of cell cycle progression, Cell28:41.PubMedCrossRefGoogle Scholar
  18. Chafouleas, J. G., Dedman, J. R., Munjaal, R. P., and Means, A. R., 1979, Calmodulin: Development and application of a sensitive radioimmunoassay, J. Biol. Chem. 254:10262.PubMedGoogle Scholar
  19. Chafouleas, J. G., Pardue, R. L., Brinkley, B. R., Dedman, J. R., and Means, A. R., 1980, Effect of viral transformation on intracellular regulation of calmodulin and tubulin, in: “Calcium-Binding Proteins: Structure and Function”, F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan and R. H. Wasserman, eds., p. 189, Amsterdam, Elseiver.Google Scholar
  20. Chafouleas, J. G., Pardue, R. L., Brinkley, B. R., Dedman, J. R., and Means, A. R., 1981, Regulation of intracellular levels of calmodulin and tubulin in normal and transformed cells, Proc. Natl Acad. Sci. USA 78:996.PubMedCrossRefGoogle Scholar
  21. Charbonneau, H., and M. J. Cormier, 1979, Purification of plant calmodulin by fluphenazine-Sepharose affinity chromatography, Biochem. Biophys. Res. Commun. 90:1039.PubMedCrossRefGoogle Scholar
  22. Corbin, J. D., Park, C. R., and Exton, J. H., 1976, Studies on the -adrenergic activation of hepatic glucose output, J. Biol. Chem. 251:5209.PubMedGoogle Scholar
  23. Cheung, W. Y., 1970, Cyclic 3’,5’-nucleotide phosphodiesterase: demonstration of an activator, Biochem. Biophys. Res. Commun. 38:533.PubMedCrossRefGoogle Scholar
  24. Cohen, P., Burchell, A., Foulkes, J. G., Cohen, P. T. W.++Nairn, A., and Vanaman, T., 1978, Identification of the Ca dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase, FEBS Letters92(2):287.PubMedCrossRefGoogle Scholar
  25. Condeelis, J. S., 1979, Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80:751.PubMedCrossRefGoogle Scholar
  26. Conn, P. M., Chafouleas, J. G., Rogers, D., and Means, A. R., 1981, Gonadotropin releasing hormone stimulates calmodulin redistribution in rat pituitary, Nature 292:264.PubMedCrossRefGoogle Scholar
  27. Conn, P. M., Marian, J., McMillian, M., and Rogers, D., 1980, Evidence for calcium mediation of gonadotropin releasing hormone action in the pituitary, Cell Calcium 1:7.CrossRefGoogle Scholar
  28. Crouch, T. H., Holroyde, M. J., Collins, J. H., Solaro, R. J., and Potter, J. D., 1981, Interaction of calmodulin with skeletal muscle myosin light chain kinase, Biochemistry20:6318.PubMedCrossRefGoogle Scholar
  29. Cushman, S. W., and Wardzala, L. J., 1980, Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell, J. Biol. Chem. 255:4758.PubMedGoogle Scholar
  30. Dabrowska, R., Sherry, J. M. F., Aromatorio, D. K., and Hartshorne, D. J., 1977, Modulator protein as a component of the myosin light chain kinase from chicken gizzard, Biochemistry 17:253.CrossRefGoogle Scholar
  31. Dedman, J. R., Jackson, R. L., Schreiber, W, E., and Means, A. R., 1978, Sequence homology of the Ca -dependent regulator of cyclic nucleotide phosphodiesterase from rat testis with other Ca -binding proteins, J. Biol. Chem. 253:343.PubMedGoogle Scholar
  32. Dedman, J. R., Lin, T., Marcum, J. M., Brinkley, B. R., and Means, A. R., 1980, Calmodulin: Its role in the mitotic apparatus, in: “Calcium-Binding Proteins: Structure and Function”, F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan and R. H. Wasserman, eds., p. 181, Amsterdam, Elsevier.Google Scholar
  33. Dedman, J. R., Potter, J. D., Jackson, R. L., and Means, A. R., 1977, Physicochemical properties of the Ca -dependent regulator proteins of cyclic AMP phosphodiesterase isolated from rat testis, J. Biol. Chem. 252:8415PubMedGoogle Scholar
  34. Dedman, J. R., Welsh, M. J., and Means, A. R., 1978, Ca -dependent regulator: Production and characterization of a monospecific antibody, J. Biol. Chem. 253:7515. deLanerolle, P., Adelstein, R. A., Feramisco, J. R., andPubMedGoogle Scholar
  35. Burridge, K., 1981, Characterization of antibodies to smooth muscle myosin kinase and their use in localizing myosin kinase in non-muscle cells, Proc. Natl. Acad. Sci. USA 78:4738.PubMedCrossRefGoogle Scholar
  36. DeLorenzo, J. R., and Freeman, S. D., 1978, Calcium-dependent neurotransmitter release and protein phosphorylation in synaptic vesicles, Biochem. Biophys. Res. Commun. 80:183.PubMedCrossRefGoogle Scholar
  37. DeLorenzo, J. R., Freeman, S. D.+ Yohe, W. B., and Maurer, S. C., 1979, Stimulation of Ca -dependent neurotransmitter release and presynaptic nerve terminal protein phosphory-lation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles, Proc. Natl. Acad. Sci. USA76:1838.PubMedCrossRefGoogle Scholar
  38. DeMey, J., Moeremans, M., Gevens, G., Muyudens, R., VanBelle, H., and DeBrabander, M., 1980, Immunocytochemical evidence for the association of calmodulin with microtubules of the mitotic apparatus, in: “Microtubules and Microtubule Inhibitors”, M. DeBrabander and J. DeMey, eds., p. 227, Amsterdam, Elsevier.Google Scholar
  39. Epel, D. E., Wallace, R. W., and Cheung, W. Y., 1981, Calmodulin activates NAD kinase of sea urchin eggs: An early event of fertilization, Cell 23:543.PubMedCrossRefGoogle Scholar
  40. Flanagan, J., and Kock, G. L. E., 1978, Cross-linked surface Ig attaches to actin, Nature 273:278.PubMedCrossRefGoogle Scholar
  41. Gnegy, M. E., and Lau, Y. S., 1980, Effects of chronic and acute treatment of antipsychotic drugs on calmodulin release from rat striatal membranes, Neuropharmacology 19:319.PubMedCrossRefGoogle Scholar
  42. Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature 279:679.PubMedCrossRefGoogle Scholar
  43. Gopinath, R. M., and Vincenzi, F. F., 1977, Phosphodiesterase protein activator mimics red blood cell cytoplasmic activ-ator of (Ca + Mg ) ATPase, Biochem. Biophys. Res. Commun. 77:1203.PubMedCrossRefGoogle Scholar
  44. Grab, D. J., Berzins, K., Cohen, R. S., and Siekevitz, P., 1979, Presence of calmodulin in postsynaptic desities isolated from canine cerebral cortex, J. Biol. Chem. 254:8690.PubMedGoogle Scholar
  45. Grand, R. J. A., and Perry, S. V., 1978, The amino acid sequence of the troponin C-like protein (modulator protein) from bovine uterus, FEBS Letters 92:137.CrossRefGoogle Scholar
  46. Grand, R. J. A., Shenolikar, S., and Cohen, P., 1981, The amino acid sequence of the subunit (calmodulin) of rabbit skeletal muscle phosphorylase kinase, Eur. J. Biochem. 113:359.PubMedCrossRefGoogle Scholar
  47. Guerriero, V. Jr., Rowley, D. R., and Means, A. R., 1981, Production and characterization of an antibody to myosin light chain kinase and intracellular localization of the enzyme, Cell 27:449.PubMedCrossRefGoogle Scholar
  48. Hanbauer, I., Gimble, J., and Lovenberg, W., 1979, Changes in soluble calmodulin following activation of dopamine receptors in rat striatal slices, Neuropharmacology 18:851.PubMedCrossRefGoogle Scholar
  49. Hanbauer, I., Gimble, J., Sankaran, K., and Sherard, R., 1979a, Modulation of striatal cyclic nucleotide phosphodiesterase by calmodulin: Regulation by opiate and dopamine receptor activation, Neuropharmacology 18:859.PubMedCrossRefGoogle Scholar
  50. Hanbauer, I., and Phyall, W., 1980, Involvement of calmodulin in the modulation of dopamine receptor function, Adv. Biochem. Psychopharmacol. 24:133.PubMedGoogle Scholar
  51. Hathaway, D. R., and Adelstein, R. S., 1979, Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity, Proc. Natl. Acad. Sci. USA 76:1653.PubMedCrossRefGoogle Scholar
  52. Hidaka, H., Naka, M., and Yamaki, T., 1980, Effect of novel specific myosin light chain kinase inhibitors on Ca activated Mg -ATPase of chicken gizzard actomyosin, Biochem. Biophys. Res. Commun. 90:694.CrossRefGoogle Scholar
  53. Hidaka, H., Yamaki, T., Totsuka.+T., and Asano, M., 1979, Selective inhibitors of Ca2 -binding modulator of phospho-diesterase produce vascular relaxation and inhibit actinmyosin interaction, Mol. Pharm. 15:49.Google Scholar
  54. Hinds, T. R., Larsen, F. L., and Vincenzi, F. F., 1978, Plasma membrane Ca2 transport: Stimulation by soluble proteins, Biochem. Biophys. Res. Commun. 81:455.PubMedCrossRefGoogle Scholar
  55. Ho, H. C., Dasai, R., and Wang, J. G., 1975, Effect of Ca on the stability of the protein activator of cyclic nucleotide phosphodiesterase, FEBS Letter 50(3):374.Google Scholar
  56. Hutson, N. J., Brumley, F. T., Assimacopoulos, F. D., Harper, S. C., and Exton, J. H., 1976, Studies on the a-adrenergic activation of hepatic glucose output. I. Studies on the -adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells, J. Biol. Chem. 251:5200.PubMedGoogle Scholar
  57. Jamieson, G. A., Hayes, A., Blum, J. J., and Vanaman, T. C., 1980, Structure and function relationships among calmodulins from divergent eukaryotic organisms, in: “Calcium Binging Proteins: Structure and Function”, F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan and R. H. Wasserman, eds., p. 165, Amsterdam, Elsevier.Google Scholar
  58. Jamieson, G. A., and Vanaman, T C., 1979, Calcium-dependent affinity chromatography of calmodulin on an immobilized phenothiazine, Biochem. Biophys. Res. Commun. 980:1048.CrossRefGoogle Scholar
  59. Jarrett, H. W.+and Penniston, J. T., 1977, Partial purification of the Ca -Mg ATPase activator from human erythrocytes: Its similarity to the activator of 3’,5’-cyclic nucleotide phosphodiesterase, Biochem. Biophys. Res. Commun. 77:1210.PubMedCrossRefGoogle Scholar
  60. Kakiuchi, S., and Yamagaki, R., 1970, Calcium-dependent phospho-diesterase activity and its activating factor (PAF) from brain. Studies on cyclic 3’,5’-nucleotide phospodiesterse (III), Biochem. Biophys. Res. Commun. 41:1104.PubMedCrossRefGoogle Scholar
  61. Katz, S., and Remtulla, M. A., 1978, Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 83:1373.PubMedCrossRefGoogle Scholar
  62. Keppens, S., Vaindenheede, J. R., and DeWolf, H., 1977, On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase, Biochim. Biophys. Acta. 496:448.PubMedCrossRefGoogle Scholar
  63. Klee, C. B., 1977, Conformational transition accompanying the binding of Ca to the protein activator of 3’,5’-cyclic adenosine monophosphate phosphodiesterase, Biochemistryl6(5):lOl7.Google Scholar
  64. Kretsinger, R. H., 1976, Calcium-binding proteins, Ann. Rev. Biochem. 45:239.PubMedCrossRefGoogle Scholar
  65. Kretsinger, R. H., 1979, The informational role of calcium in the cytosol, in: “Advances in Cyclic Nucleotide Research”, Vol. 11, P. Greengard and G. A. Robison, eds., p. 1, Raven Press, New York.Google Scholar
  66. LaPorte, D. C., Gidwitz, S., Weber, M. J., and Storm, D. R., 1979, Relationship between changes in the calcium-dependent regulatory protein and adenylate cyclase during viral transformation, Biochem. Biophys. Res. Commun. 86:1169.PubMedCrossRefGoogle Scholar
  67. LaPorte, D. C., Wierman, B. M., and Storm, D. R., 1980, Calciuminduced exposure of a hydrophobic surface on camodulin, Biochemistry 19:3814.PubMedCrossRefGoogle Scholar
  68. LeBreton, G. C., Dinerstein, R. J., Roth, L. J., and Feenberg, H., 1976, Direct evidence for intracellular divalent cation redistribution associated with platelet shape change, Biochem. Biophys. Res. Commun. 71:362.CrossRefGoogle Scholar
  69. LePeuch, C., Haiech, J., and Demaille, J. G., 1979, Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate-dependent and calcium-calmodulin-dependent phosphorylations, Biochemistry 18:5150.CrossRefGoogle Scholar
  70. Lin, C. T., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1980, Localization of calmodulin in rat cerebellum by immunoelectron microscopy, J. Cell Biol. 85:473.PubMedCrossRefGoogle Scholar
  71. Luthra, M. G., Au, K. S., and Hanahan, D. J., 1977, Purification of an activator of human erythrocyte membrane (Ca + Mg ) ATPase, Biochem. Biophys. Res. Commun. 77:678.PubMedCrossRefGoogle Scholar
  72. Lynch, T. J., Tallant, E. A., and Cheung, W. Y., 1976, Ca dependent formation of brain adenylate cyclase-protein activator complex, Biochem. Biophys. Res. Commun. 68(2):6I6.CrossRefGoogle Scholar
  73. Marcum, M., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1978, Regulation of microtubule polymerization by rat testis calcium-dependent regulator protein, Proc. Natl. Acad. Sci. USA 75:3771.PubMedCrossRefGoogle Scholar
  74. Means, A. R., and Dedman, J. R., 1980, Calmodulin: An intracellular calcium receptor, Nature 285:73.PubMedCrossRefGoogle Scholar
  75. Means, A. R., Tash, J. S., and Chafouleas, J. G., 1982, Physio-logical implications of the presence, distribution and regulation of calmodulin in eukaryotic cells, Physiol. Rev. 62:1.PubMedGoogle Scholar
  76. Mescher, M. F., Jose, M. J. L., and Balk, S. P., 1981, Actincontaining matrix associated with the plasma membrane of murine tumor and lymphoid cells, Nature 289:139.PubMedCrossRefGoogle Scholar
  77. Morgan, M., Perry, S. V., and Ottaway, J., 1976, Myosin light chain phosphatase, Biochem. J. 157:687.PubMedGoogle Scholar
  78. Munjaal, R. P., Chandra, T., Woo, S. L. C., Dedman, J. R., and Means, A. R., 1981, A cloned calmodulin structural gene probe is complementary to DNA sequences from diverse species, Proc. Natl. Acad. Sci. USA 78:2330.PubMedCrossRefGoogle Scholar
  79. Naccache, P. H., Volpi, M., Showell, J. H., Becker, E. L., and Sha’afi, R. I., 1979, Chemotatic factor-induced release of membrane calcium in rabbit neutrophils, Science203:461.PubMedCrossRefGoogle Scholar
  80. Pato, M. D., and Adelstein, R. S., 1980, Dephosphorylation of the 20,000-dalton light chain of myosin by two different phosphatases from smooth muscle, J. Biol. Chem. 255:5535.Google Scholar
  81. Pershadsingh, H. A., McDaniel, M. L., Landt, M.,+Bry, C. G., Lacy, P. E., and McDonald, J. M., 1980, Ca2 -activated ATPase and ATP-dependent calmodulin-stimulated Ca2 transport in islet cell plasma membrane, Nature 288:492.PubMedCrossRefGoogle Scholar
  82. Pershadsingh, H. A., and McDonald, J. M., 1980, A high affinity calcium-stimulated magnesium-dependent adenosine triphosphatease in rat adipocyte plasma membranes, J. Biol. Chem. 255:4087.PubMedGoogle Scholar
  83. Pichard, A. L., and Cheung, W. Y., 1977, Cyclic 3’,5’-nucleotide phosphodiesterase stimulation of bovine brain cytoplasmic enzyme by lysophosphatidyl choline, J. Biol. Chem. 252:4872.PubMedGoogle Scholar
  84. Pires, E. M. V., and Perry, S. V., 1977, Purification and prop-erties of myosin light chain kinase from fast skeletal muscle, Biochem. J. 167:137.PubMedGoogle Scholar
  85. Rasmussen, H., 1970, Cell communication, calcium ion, cyclic adenosine monophosphate, Science 170:404.PubMedCrossRefGoogle Scholar
  86. Rasmussen, H., Goodman, D. B. P., Friedman, N., Allen, J. E., and Kurvkawa, K., 1976, Ionic control of metabo-lism, in: “Handbook of Physiology-Endocrinology”. Vol. VII. p. 225. American Physiological Society, Washington, D.C.Google Scholar
  87. Rebhun, L. I., 1977, Cyclic nucleotides, calcium and cell divi-sion, Int. Rev. Cytol. 49:1–54.CrossRefGoogle Scholar
  88. Richman, P., 1978, Conformation-dependent acetylation and nitra-tion of the protein activator of cyclic adenosine 3’,5’monophosphate phosphodiesterase. Selective nitration of tyrosine residue 138, Biochemistry 17:3001.PubMedCrossRefGoogle Scholar
  89. Salisbury, J. L., Condeelis, J. S., and Satir, P., 1980, Role of coated vesicles, microfilaments and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoic cells, J. Cell Biol. 87:132.PubMedCrossRefGoogle Scholar
  90. Salmon, E. D., and Segall, R. R., 1980, Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variepatus), J. Cell Biol. 85:355.CrossRefGoogle Scholar
  91. Schulman, H., and Greengard, P., 1977, Stimulation of brain membrane protein phosphorylation by calcium and an endo-genous heat-stable protein, Nature 271:478.CrossRefGoogle Scholar
  92. Schulman, H., and Greengard, P., 1978, Ca -dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator.” Proc. Natl. Acad. Sci. USA 75:5432.PubMedCrossRefGoogle Scholar
  93. Seeman, P., 1972, The membrane actions of anesthetics and tranquilizers, Pharmacol. Rev. 24:53. ++Google Scholar
  94. Sieghart, W., Forn, J., and Greengard, P., 1979, Ca and cyclic AMP regulate phosphorylation of the same two membraneassociated proteins specific to nerve tissue, Proc. Natl. Acad. Sci. USA 76:2475.PubMedCrossRefGoogle Scholar
  95. Smoake, J. A., and Solomon, S. S., 1980, Subcellular shifts in cyclic AMP phosphodiesterase and its calcium-dependent regulator in liver: Role of diabetes, Biochem. Biophys. Res. Commun. 94:242.CrossRefGoogle Scholar
  96. Soderling, T. R., Sheorain, V. S., and Ericsson, L. H., 1979, Phosphorylation of glycogen synthase by phosphorylase kinase, FEBS Letters 106:181.PubMedCrossRefGoogle Scholar
  97. Soderling, T. R., 1979, Stimulation of glycogen synthase phosphorylation by calcium-dependent regulator protein, J. Biol. Chem. 254:583.Google Scholar
  98. Stull, J. T., 1980, Phosphorylation of contractile proteins in relation to muscle function, Adv. Cyclic Nucl. Res. 13:39.Google Scholar
  99. Suzuki, K., and Kono, T., 1980, Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site, J. Biol. Chem. 77:2542.Google Scholar
  100. Tanaka, T., and Hidaka, H., 1980, Hydrophobic regions function in calmodulin enzyme(s) interactions, J. Biol. Chem. 255: 11078.PubMedGoogle Scholar
  101. Tash, J. S., Means, A. R., Brinkley, B. R., Dedman, J. R., and Cox, S. M., 1980, Cyclic nucleotide and Ca2+ regulation of microtubule initiation and elongation, in: “Microtubules and Microtubule Inhibitors”, M. DeBrabander and J. DeMey, eds., p. 269, Amsterdam, Elsevier.Google Scholar
  102. Terasima, T., and Tolmach, L. J., 1961, Changes in X-ray sensitivity of HeLa cells during the division cycle, Nature 190:1210.PubMedCrossRefGoogle Scholar
  103. Towbin, H., Staehelin, T. and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitro-cellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350.PubMedCrossRefGoogle Scholar
  104. W. J., 1979, Calmodulin activation of adenylate cyclase in pancreatic islets, Science 206:225.PubMedCrossRefGoogle Scholar
  105. Van Eldik, L. J., and Watterson, D. M., 1981, Reproducible pro-duction of anti-serum against vertebrate calmodulin and determination of the immunoreactive site, J. Biol. Chem. 256:4205.PubMedGoogle Scholar
  106. Wallace, R. W., and Cheung, W. Y., 1978, Calmodulin: Production of an antibody in rabbit and development of a radioimmunoassay, J. Biol. Chem. 254:6564.Google Scholar
  107. Walsh, M. P., Cavadore, J. C., Vallet, B., and Demaille, J. G., 1980, Calmodulin-dependent light chain kinase from cardiac and smooth muscle: A comparative study, Cancer J. Biochem. 58:229.CrossRefGoogle Scholar
  108. Watterson, D. M., Sharief, F., and Vanaman, J. C., 1980, The complete amino acid sequence of the Ca2+ -dependent modula-tor protein (calmodulin) of bovine brain, J. Biol. Chem. 255:962.PubMedGoogle Scholar
  109. Watterson, D. M., Van Eldik, L. J., Smith, R. E., and Vanaman, T. C., 1976, Calcium-dependent regulatory protein of cyclic nucleotide metabolism in normal and transformed chick embryo fibroblasts, Proc. Natl. Acad. Sci. USA 73:2711.PubMedCrossRefGoogle Scholar
  110. Weiss, B., and Levin, R. M., 1978, Mechanism for selectively inhibiting the activation of the cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents, Adv. Cycl. Nucl. Res. 9:285.Google Scholar
  111. Welsh, M. J., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1978, Calcium-dependent regulator protein: Localization in mitotic apparatus of eucaryotic cells, Proc. Natl. Acad. Sci. USA 75:1867.PubMedCrossRefGoogle Scholar
  112. Welsh, M. J., Dedman, J. R., Brinkley, B. R., and Means, A. R., 1979, Tubulin and calmodulin: Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus, J. Cell Biol. 81:624.PubMedCrossRefGoogle Scholar
  113. Wolf, H., and Hofmann, F., 1980, Purification of myosin light chain kinase from bovine cardiac muscle, Proc. Natl. Acad. Sci. USA 77:5855. +Google Scholar
  114. Wolff, D. J., and Brostrom, C. O., 1976, Ca2 -dependent cyclic nucleotide phosphodiesterase from brain: Identification of phospholipids and calcium-independent activators, Arch. Biochem. Biophys. 173:720.PubMedCrossRefGoogle Scholar
  115. Wong, P. Y. K., and Cheung, W. Y., 1979, Calmodulin stimulates human platelet phospholipase A2, Biochem. Biophys. Res. Commun. 90:473.PubMedCrossRefGoogle Scholar
  116. Wood, J. G., Wallace, R. W., Whitaker, J. N., and Cheung, W. Y., 1980, Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BPgo) in basal ganglia of mouse brain, J. Cell Biol. 84:66–76.PubMedCrossRefGoogle Scholar
  117. Yagi, K., Yazawa, M., Kakiuchi, S., Ohshima, M., Uenishi, K., 1978, Identification of an activator protein for myosin light chain kinase as the Ca -dependent modulator protein, J. Biol. Chem. 253:1338. ++PubMedGoogle Scholar
  118. Yamauchi, T., and Fujisawa, H., 1979, Most of the Ca -depend-ent endogenous phosphorylation of rat brain cytosol pro-teins requires Ca -dependent regulator protein, Biochem. Biophys Res. Commun. 909:1172.CrossRefGoogle Scholar
  119. Yazawa, M., Yagi, K., Toda, H., Kondo, K., Narita, K., Yamazaki, R., Sobue, K., Kakiuchi, S., Nagao, S., and Nozawa, Y., 1981, The amino acid sequence of the Tetrahymena calmodulin which specifically interacts with guanylate cyclase, Biochem. Biophys. Res. Commun. 99:1051.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. R. Means
    • 1
  • J. G. Chafouleas
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations