The Role of the Cytoskeleton in the Responses of Target Cells to Hormones

  • Peter F. Hall
Part of the Biochemical Endocrinology book series (BIOEND, volume 1)


To make the best use of its organelles and macromolecules, the cell requires a cytoskeleton. This term is applied to three systems of tubules found in most if not all cells, namely microtubules (diameter, 25 nm), intermediate filaments (diameter, 10 mn) and microfilaments (diameter 6 nm). The basic component of microtubules is the protein tubulin; intermediate filaments contain a variety of proteins (keratin, desmin, and vimentin) (Lazarides, 1980) and microfilaments are composed of actin. The term cytoskeleton is intended to evoke analogies with the skeletal system of vertebrate organ- isms which provides a rigid support for the attachment of the contractile machinery of the body. As a result of this relationship, the muscles can both shorten and provide force at a fixed length. The analogy has some virtue but inevi- tably comparisons between the mechanics of one cell and those of a whole organism cannot be taken too far. Since little is known about the functions of intermediate filaments (Lazari- des, 1980), this chapter will be confined to the consideration of microtubules and microfilaments. With respect to microfil- aments , the widespread occurrence of extramuscular myosin suggests that analogies with muscle may extend to myosin ATPase. However, at present this idea cannot be accepted at face value because too little is known about the functions of extramuscular myosin.


Leydig Cell Intermediate Filament Open Triangle Adrenal Cell Steroid Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borisy, G. G., and Taylor, E. W., 1967, The mechanism of cholchicine, J. Cell Biol. 34:535–548.PubMedCrossRefGoogle Scholar
  2. Bourquet, J., Chevalier, J., and Hugon, J. S., 1976, Altera-tions in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium, . Biophysical J. 16:627–639.CrossRefGoogle Scholar
  3. Carlsson, L., Mystrom, L. E., Lindberg, U., Kannan, K. K., Cid-Dresdner, H., Lovgren, S., and Jornvall, H., 1976, Crystallization of a non-muscle actin, J. Mol. Biol. 105:353–366.PubMedCrossRefGoogle Scholar
  4. Crivello, J. F., Jefcoate, C. R., 1980, Intracellular movement of cholesterol in rat adrenals, J. Biol. Chem. 255: 8144–8151.PubMedGoogle Scholar
  5. Dedman, J. R., Porter, J. D., Jackson, R. L., Johnson, J. D., and Means, A. R., 1977, Physiochemical properties of rat testis regular protein of cyclic nucleotide phosphodieterase, J. Biol. Chem. 252:8415–8422.PubMedGoogle Scholar
  6. Dentler, W. L., Pratt, M. M., and Stephens, R. E., 1980, Microtubulemembrane interactions in cilia. II: Identifica-tion of a membrane-associated dyneine-like ATPase, J. Cell. Biol. 84:381–403.PubMedCrossRefGoogle Scholar
  7. Dickson, J. G., Malan, P. G., and Ekins, R. P., 1979, The association of actin with a thyroid lysosomal fraction, Europ. J Biochem. 97:471–479.PubMedCrossRefGoogle Scholar
  8. Fertel, R. M., and Weiss, B., 1976, Properties and drug responsiveness of cyclic nucleotide phosphodiesterases of rat lung, Molec. Pharmacol. 12:678–687.Google Scholar
  9. Freed, J. J., and Lebowitz, M. M., 1970, The association of a class saltatory movements with microtubules in cultured cells, J. Cell Biol. 45:334–354.PubMedCrossRefGoogle Scholar
  10. Fujiwara, K., Porter, M. E., and Pollard, T. D., 1978, Alphaactinin localization in the cleavage furrow during cyto-kinesis, J. Cell Biol. 79:268–275.PubMedCrossRefGoogle Scholar
  11. Gabbiani, G., Ryan, G. B., Lamelin, J. P., Vassalli, P., Majno, G., Bouvier, C., Rimchaud, A., and Luscher, E. F., 1973, Human smooth muscle autoantibody, Amer. J. Pathol. 72:473–488.Google Scholar
  12. Gautwik, K. M., and Tashjian, A. H., 1973, Effects of cholchicine on release of prolactin and growth hormone by pitui-tary tumor cells in vitro, Endocrinology 93:793–799.CrossRefGoogle Scholar
  13. Hall, P. F., 1970, Gonadotrophic regulation of testicular function, in: “Androgens of the Testis,” K. B. Eik-Nes, ed., Marcel Dekker Inc., New York, pp. 73–115.Google Scholar
  14. Hall, P. F., Charponnier, C., Nakamura, M., and Gabbiani, G., 1979, role of microfilaments in the response of adrenal tumor cells to ACTH, J. Biol. Chem. 254:9080–9084.PubMedGoogle Scholar
  15. Hall, P. F., Charponnier, C., Nakamura, M., and Gabbiani, G., 1979b, The role of microfilaments in the responses of Leydig cells to LH, J. Steroid Biochem. 11:1361–1366.PubMedCrossRefGoogle Scholar
  16. Hall, P. F., Charponnier, C., and Gabbiani, G., 1980, Role of actin in the response of Leydig cells to LH, in: “Testicular Development Structure and Function,” A. Steinberger and E. Steinberger, eds., p. 229, Raven Press, New York.Google Scholar
  17. Hall, P. F., Nakamura, M., and Mrotek, J. J., 1981a, The actions of various cytochalasins on mouse adrenal tumor cells in relation to trophic stimulation of steroidogenesis, Biochim. Biophys. Acta. 676:338–344.PubMedCrossRefGoogle Scholar
  18. Hall, P. F., Osawa, S. and Thomasson, C. L., 1981b, A role for calmodulin in the regulation of steroidogenesis, J Cell Biol.. 90:402–407.PubMedCrossRefGoogle Scholar
  19. Hall, P. F., Osawa, S., and Mrotek, J. K., 1981c, Influence of calmodulin on steroid synthesis in Leydig cells from rat testis, Endocrinology 109:1677–1682.PubMedCrossRefGoogle Scholar
  20. Hartwig, J. H., and Stossel, T. P., 1979, Cytochalasin B and the structure of actin gels, J. Mol. Biol. 134:539–553.PubMedCrossRefGoogle Scholar
  21. Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43:312–328.PubMedCrossRefGoogle Scholar
  22. Kathadorian, W. A., Ellis, S. J., and Muller, J., 1979, Possi-ble role for microtubules and microfilaments in ADH action, Amer. J. Physiol. 236:F14–F20 .Google Scholar
  23. Kember, B., Habener, J. F., Rich, A., and Potts, J. T., 1975, Microtubules and the intracellular conversion of proparathyroid hormone to parathyroid hormone, Endocrinology96:903–912.CrossRefGoogle Scholar
  24. Kiehart, D. P., 1981, Studies on in vivo sensitivity of spindle microtubules to Ca2 , J. Cell Biol. 88:604–617.PubMedCrossRefGoogle Scholar
  25. Klinck, G. H., Oertel, J. E., and Winship, T., 1970, Ultrastructure of normal human thyroid, Lab. Invest. 22:2–22.PubMedGoogle Scholar
  26. Korn, E. D., 1978, Biochemistry of actomycin-dependent cell motility, a review, Proc. Natl. Acad. Sci. 75:588–599.PubMedCrossRefGoogle Scholar
  27. Labrie, F., Pelletier, G., Gauthier, M., Borgeat, P., Lemay, A., and Gouge, J. J., 1973, Role of microtubules in basal and stimulated release of growth hormone and prolactin in rat adenohypophysis in vitro, Endocrinology 93:903–914.PubMedCrossRefGoogle Scholar
  28. Lacy, P. E., Howell, S. L., Young, D. A., and Fink, C. J., 1968, New hypothesis of insulin secretion, Nature 219:1177–1179.PubMedCrossRefGoogle Scholar
  29. Lazarides, E., 1980, Intermediate filaments as mechanical inte-grators of cellular space, Nature 283:249–256.PubMedCrossRefGoogle Scholar
  30. Lin, D. C., Tobin, K. D., Grumet, M., and Lin, S., 1980, Cyto-chalasins inhibit nuclei-induced actin polymerization by blocking filament elongation, J. Cell Biol. 84:455–460.PubMedCrossRefGoogle Scholar
  31. Mahafee, D., Reitz, R. C., and Ney, R. L., 1974, The mechanism of action of ACTH. The role of mitochondrial cholesterol accumulation in the regulation of steroidogenesis, J. Biol. Chem. 249:227–233.Google Scholar
  32. Margolis, R. L., and Wilson, L., 1978, Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell 13:1–8.PubMedCrossRefGoogle Scholar
  33. McIntosh, J. R., 1979, Cell division, in: “Microtubules,” K. Roberts and J. S. Hyams, eds., p. 381, Academic Press, New York.Google Scholar
  34. Means, A. R., and Dedman, J. R., 1980, Calmodulin -an intracellular calcium receptor, Nature 285:73–77.PubMedCrossRefGoogle Scholar
  35. Means, A. R., and Dedman, J. R., 1980, Calmodulin -an intracellular calcium receptor, Nature 285:73–84.PubMedCrossRefGoogle Scholar
  36. Miranda, A. F., Godman, G. G., and Tanenbaum, S. W., 1974, Action of cytochalasin D on cells of established lines, J Cell Biol. 62:406–423.PubMedCrossRefGoogle Scholar
  37. Mrotek, J. J., and Hall, P. F., 1975, The influence of cyto-chalasin B on the response of adrenal tumor cells to ACTH and cyclic AMP, Biochem. Biophy. Res. Commun. 64:891–896.CrossRefGoogle Scholar
  38. Mrotek, J. J., and Hall, P. J., 1977, Response of adrenal tumor cells to ACTH: site of inhibition by cytochalasin B, Biochemistry 16:3177–3181.PubMedCrossRefGoogle Scholar
  39. Muller, J., Kachadorian, W. A., and DiScala, V. A., 1980, Evidence that ACTH-stimulated intramembrane particle aggregates are transferred from cytqplasmic to luminal membranes in toad bladder epithelial cells, J. Cell Biol.. 85:83–95.PubMedCrossRefGoogle Scholar
  40. Nakamura, M., Watanuki, M., Tilley, B., and Hall, P. J., 1980, Effect of ACTH on intracellular cholesterol transport, J. Endocrinol. 84:179–188.PubMedCrossRefGoogle Scholar
  41. Neve, P., Keyelbant-Balasse, P., Willems, C., and Dumont, J. E., 1972, Effect of inhibitors of microtubules and microfilaments on dog thyroid slices in vitro, Exper. Cell Res. 74:227–244.CrossRefGoogle Scholar
  42. Nicklas, R. B., 197I, Chromosomal movement during cell division, in: “Advances in Cell Biology,” D. M. Prescott, L. Goldstein and E. McConkey, eds., Appleton, Century, Crofts, New York, Vol. 2, pp. 225–297.Google Scholar
  43. Pipeleers, D. G., Pipeleers-Marichal, M. A., and Kipnis, D. M., 1976, Microtubule assembly and intracellular transport of secretory granules in pancreatic islets, Science 191:88–89.PubMedCrossRefGoogle Scholar
  44. Poisner, A. M., and Cooke, P., 1975, Microtubules and the adrenal medulla, Ann. N. Y. Acad. Sci. 253:653–668.PubMedCrossRefGoogle Scholar
  45. Reavan, E. P., and Reaven, G. M., 1975, A quantitative ultrastructural study of microtubule content in parathyroid gland, J. Clin. Invest. 56:29–55.Google Scholar
  46. Schroeder, T. R., 1973, Actin in dividing cells: contractile ring filaments bind heavy meromyosin, Proc. Natl. Acad. Sci. 70:1688–1692.PubMedCrossRefGoogle Scholar
  47. Taylor, D. L., and Condeelis, J. S., 1979, Cytoplasmic struc-ture and contractility in amoeboid cells, International Review of Cytology 56:57–144.PubMedCrossRefGoogle Scholar
  48. Unsicker, K., Limmeroth-Everet, B., Otten, U., Lindmar, R., Loffel-holz, K., and Wolff, U., 1979, Effects of vinblastine on rat adrenal medulla, Cell Tissue Res. 196:271–288.PubMedCrossRefGoogle Scholar
  49. Vallee, R. B., 1980, Structure and phosphorylation of MAPS. Proc. Natl. Acad. Sci. 77:3206–3210.PubMedCrossRefGoogle Scholar
  50. Weihing, R. R., 1977, Effect of myosin and heavy meromyosin on actin-related gelation of HeLa cell extract, J. Cell Biol. 75:95–103.PubMedCrossRefGoogle Scholar
  51. Weisenberg, R. C., 1972, Microtubule formation in vitro in solu-tions containing low calcium concentrations, Science177:1104–1105.PubMedCrossRefGoogle Scholar
  52. Weiss, B., Fertel, R., Tichn, R., and Uzunov, P., 1974, Selec-tive alteration of the activity of the multiple forms of AMP phosphodiosterase of rat cerebum, Molecular Pharma-cology 12:581–589.Google Scholar
  53. Williams, J. A., and Wolff, J., 1970, Possible role of microtubules in thyroid secretion, Proc. Natl. Acad. Sci.67:1901–1908.PubMedCrossRefGoogle Scholar
  54. Wollman, S. H., 1969, Lysosomes in Biology and Pathology, ed. J. T. Dingle and H. B. Fell, North-Holland, Amsterdam, Vol. 2, p. 483.Google Scholar
  55. Wolosewick, J. J., and Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance -artifact or reality, J. Cell. Biol. 82:114–139.PubMedCrossRefGoogle Scholar
  56. Woodrum, D. T., Rich, S. A., Pollard, T. D., 1975, Evidence for biased bidirectional polymerization of actin filaments using heavy meromysin prepared by an improved method, J. Cell Biol. 67:231–237.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Peter F. Hall
    • 1
  1. 1.Worcester Foundation for Experimental BiologyShrewsburyUSA

Personalised recommendations