Advertisement

Myasthenia Gravis — Some Experimental Approaches

  • Roger Harrison
  • George G. Lunt
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 13)

Abstract

It is now very well established that myasthenia gravis is an autoimmune disease in which the nicotinic acetylcholine receptor (nAChR) is the autoantigen. However, although elevated levels of circulating anti(nAChR) antibodies are found in more than 90% of patients with myasthenia gravis, the precise role of the antibodies in the pathogenesis of the disease is still unclear [1]. Three antibody-mediated processes could contribute to the impairment of nerve-muscle function:-
  1. (1)

    direct immunopharmacological blockade of the binding site on the acetylcholine receptor;

     
  2. (2)

    accelerated degradation of receptor prompted by antibody binding;

     
  3. (3)

    lysis of the nerve cells, possibly involving the complement system.

     

Keywords

Muscular Dystrophy Chick Embryo Nicotinic Acetylcholine Receptor Myoblast Fusion Cellular Immune System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vincent, A. (1980) Physiol. Rev. 60, 756–824.Google Scholar
  2. 2.
    Harvey, A.L., Robertson, J.G., Barkas, T., Harrison, R., Lunt, G.G., Stephenson, F.A., Campbell, M.J. & Teague, R.H. (1978) Clin. Exp. Immunol. 34, 411–416.Google Scholar
  3. 3.
    Harvey, A.L. & Dryden, W.F. (1974) Eur.J. Pharmacol. 27, 5–13.CrossRefGoogle Scholar
  4. 4.
    Bevan, S., Kullberg, R.W. & Heinemann, S.F. (1977) Nature 267, 263–265.CrossRefGoogle Scholar
  5. 5.
    Anwyl, R., Appel, S.M. & Narahashi, T. (1977) Nature, 267, 262–263.CrossRefGoogle Scholar
  6. 6.
    Savage-Marengo, T., Harrison, R., Lunt, G.G. & Behan, P.O. (1980) J. Neurol. Neurosurg. Psych. 43, 316–320.CrossRefGoogle Scholar
  7. 7.
    Liveson, T.A., Godman, G., Kornfield, P. & Bornstein, M.B. (1976) Exp. Neurol. 50, 620–627.CrossRefGoogle Scholar
  8. 8.
    Dawkins, R.L. & Mastaglia, F.L. (1973) New Engl. J. Med. 288, 434–488.CrossRefGoogle Scholar
  9. 9.
    Cambridge, G. & Stern, C.M.M. (1981) Clin. Exp. Immunol. 43, 211–219.Google Scholar
  10. 10.
    Bird, M., Harrison, R. & Lunt, G.G. (1980) Biochem. Soc. Trans. 8, 741.Google Scholar
  11. 11.
    Harrison, R., Lunt, G.G., Morris, H., Savage-Marengo, T. & Behan, P.O. (1981) Ann. N.Y. Acad. Sci. 377, 332–341.CrossRefGoogle Scholar
  12. 12.
    Reiness, C.G. & Hall, Z.W. (1981) Dev. Biol. 81, 324–331.CrossRefGoogle Scholar
  13. 13.
    Stephenson, F.A., Harrison, R. & Lunt, G.G. (1981) Eur. I. Biochem. 115, 91–97.CrossRefGoogle Scholar
  14. 14.
    Carter, B., Harrison, R., Lunt, G.G., Morris, H., Savage-Marengo, T. & Stephenson, F.A. (1981) Ann. Clin. Biochem. 18, 146–152.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Roger Harrison
    • 1
  • George G. Lunt
    • 1
  1. 1.Department of BiochemistryUniversity of BathBathUK

Personalised recommendations