Advertisement

Solubilization and Characterization of Muscarinic Acetylcholine Receptors

  • E. C. Hulme
  • N. J. M. Birdsall
  • C. P. Berrie
  • T. Haga
  • J. M. Stockton
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 13)

Abstract

Three distinct types of detergent have been found to be capable of solubilizing muscarinic binding activity from the rat forebrain. These are: (a) the alkylpolyoxyethylenes such as Lubrol PX [1]; (b) steroids such as cholate [2, 3], digitonin [4, 5] and the cholate sulphobetaine derivative CHAPS [6]; and (c) lysophosphatidylcholine [7]. In such studies, it has proved convenient to compare the overall yield of solubilized receptors from brain membranes (P2 and P3) pre-labelled with the irreversible alkylating affinity label [3H]propylbenzilylcholine (3H-PrBCM) [8] with the yield of active binding sites which can be assayed in the supernatant after extraction of non-pre-labelled membranes. Solubilized binding sites were conveniently measured by incubating 600,000 g-min supernatants with receptor-saturating concentrations (3 × 10-8 M) of (-)-N-[Me-3H]- scopolamine (3H-NMS) or (-)-[3H]quinuclidinyl-benzilate (3H-QNB), followed by separation of bound from free ligand by rapid gel filtration on small columns of Sephadex G-50 M [3].

Keywords

Muscarinic Receptor Muscarinic Acetylcholine Receptor Sodium Cholate Digitonin Extract Muscarinic Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haga, T. (1980) FEBS Lett. 113, 68–72.CrossRefGoogle Scholar
  2. 2.
    Carson, S. (1982) Biochem. Pharmacol. 31, 1806–1809.CrossRefGoogle Scholar
  3. 3.
    Hulme, E.C., Berne, C.P., Haga, T., Birdsall, N.J.M., Burgen, A.S.V. & Stockton, J. (1983) J. Receptor Res. 3, 301–313.Google Scholar
  4. 4.
    Gorissen, H., Aerts, G. & Laduron, P. (1978) FEBS Lett. 96 64–68.CrossRefGoogle Scholar
  5. 5.
    Hurko, O. (1978) Arch. Biochem. Biophys. 190, 434–445.CrossRefGoogle Scholar
  6. 6.
    Hjelmeland, L.M. (1980) Proc. Nat. Acad. Sci. 77, 6368–6370.CrossRefGoogle Scholar
  7. 7.
    Haga, T. (1980) Biomed. Res. 1, 265–268.Google Scholar
  8. 8.
    Burgen, A.S.V., Hiley, C.R. & Young, J.M. (1974) Br. J. Pharmacol. 51, 279–285.CrossRefGoogle Scholar
  9. 9.
    Birdsall, N.J.M., Burgen, A.S.V. & Hulme, E.C. (1979) Br. J. Pharmacol. 66, 337–342.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. C. Hulme
    • 1
  • N. J. M. Birdsall
    • 1
  • C. P. Berrie
    • 1
  • T. Haga
    • 1
    • 2
  • J. M. Stockton
    • 1
  1. 1.Division of Molecular PharmacologyNational Institute for Medical ResearchLondonUK
  2. 2.Dept. of BiochemistryHamamatsu Univ. Sch. of Med.HamamatsuJapan

Personalised recommendations