Preparation of Immunoliposomes

  • Anthony Huang
  • Stephen J. Kennel
  • Leaf Huang
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 13)


Liposomes have been extensively tested as carriers of drugs, enzymes and other biologically important molecules [1]. One of the major problems of using liposomes as carrier systems is their non-specificity of delivery. In our laboratory, we have attempted to solve this problem by covalently attaching target-specific antibody to liposomes. In the method developed, the antibody is first made amphipathic by the covalent attachment of palmitic acid. The derivatized antibody is then incorporated into liposomal bilayers using a detergentdialysis or modified ‘REV method [2]. We have termed these antibodycarrying liposomes ‘immunoliposomes’. Using a monoclonal antibody (11–4.1) against the murine major histocompatibility antigen, H-2Kk, we have shown that these immunoliposomes bind specifically to target cells carrying the proper cell-surface antigens [3, 4].


Palmitic Acid Antibody Molecule Liposomal Bilayer Moloney Leukaemia Virus Palmitoyl Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gregoriadis, G., ed. (1979) Drug Carriers in Biology and Medicine, Academic Press, London; see pp. 287–341.Google Scholar
  2. 2.
    Szoka, F. jr. & Papahadjopoulos, D. (1978) Proc. Nat. Acad. Sci. 75, 4194–4198.CrossRefGoogle Scholar
  3. 3.
    Huang, A., Huang, L. & Kennel, L. (1982) J. Biol. Chem. 255, 8713–8716.Google Scholar
  4. 4.
    Shen, D.F., Huang, A. & Huang, L. (1982) Biochim. Biophys. Acta 689, 31–37.CrossRefGoogle Scholar
  5. 5.
    Huang, A., Taso, Y.S., Kennel, S.J. & Huang, L. (1982) Biochim. Biophys. Acta 716, 140–150.CrossRefGoogle Scholar
  6. 6.
    Huang, L., Huang, A. & Kennel, S.J. (1983) in Liposome Technology (Gregoriadis, G., ed.), CRC Press, Boca Raton, FL, in press.Google Scholar
  7. 7.
    Torchillin, V.P., Khaw, B.A., Smirnov, V.N. & Haber, E. (1979) Biochem. Biophys. Res. Comm. 89, 1114–1119.CrossRefGoogle Scholar
  8. 8.
    Dunnick, J.K., MacDougall, I.R., Aragon, S., Goris, M.L. & Kriss, J.P. (1975) J. Nucl. Med. 16, 483–487.Google Scholar
  9. 9.
    Heath, T.D., Macher, B.A. & Papahadjopoulos, D. (1981) Biochim. Biophys. Acta 640, 66–81.CrossRefGoogle Scholar
  10. 10.
    Leserman, L.D., Barbet, J., Kourilsky, F. & Weinstein, J.N. (1981) Nature 288, 602–604.CrossRefGoogle Scholar
  11. 11.
    Martin, F.J., Hubbell, W.L. & Paphadjopoulos, D. (1981) Biochemistry 20, 4229–4238.CrossRefGoogle Scholar
  12. 12.
    Martin, F.J. & Paphadjopoulos, D. (1982) J. Biol. Chem. 257, 286–288.Google Scholar
  13. 13.
    Jansons, V.K. & Mallett, P.L. (1981) Anal. Biochem. 111, 54–59.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Anthony Huang
    • 1
  • Stephen J. Kennel
    • 1
  • Leaf Huang
    • 2
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of BiochemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations