Involvement of Microtubules in Insulin-Receptor Turnover in Cardiac Myocytes

  • Jürgen Eckel
  • Hans Reinauer
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 13)


The effects of the microtubule- disruptive drug vinblastine on the turnover of cardiac insulin receptors has been studied using isolated muscle cells from adult rat heart. The receptor’s 1/2-life was estimated from the insulin internalization rate to be ~3 h at 10 nM insulin concentration. Increasing the receptor turnover rate resulted in an increasing inhibition of insulin binding after treatment of cells v/ith vinblastine. In the presence of cycloheximide insulin binding decreased by 30%; this effect v/as found to be additive in respect of the action of vinblastine. Treatment of cells with vinblastine significantly reduced the low mol. wt. material produced by receptor-mediated degradation of insulin. This effect was not additive to that of the lysosomotropic agent chloroquine. The results suggest involvement of microtubules in the intracellular transfer of insulin receptors from and to the plasma membrane.


Insulin Receptor Cardiac Myocytes Insulin Concentration Insulin Binding Isolate Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoffstein, S., Goldstein, I.M. & Weissman, G. (1977) J. Cell Biol. 73, 242–256.CrossRefGoogle Scholar
  2. 2.
    Eckel, J. & Reinauer, H. (1980) Biochem. Biophys. Res. Comm. 92, 1403–1408.CrossRefGoogle Scholar
  3. 3.
    Eckel, J. & Reinauer, H. (1980) Biochim. Biophys. Acta 629, 510–521.CrossRefGoogle Scholar
  4. 4.
    Eckel, J. & Reinauer, H. (1982) Biochem. J. 206, 655–662.Google Scholar
  5. 5.
    Eckel, J., Offermann, A. & Reinauer, H. (1982) Basic Res. Cardiol. 77, 323–332.CrossRefGoogle Scholar
  6. 6.
    Eckel, J., Pandalis, G. & Reinauer, H. (1983) Biochem. J. 212, 385–392.Google Scholar
  7. 7.
    Kosmakos, F.C. & Roth, J. (1980) J. Biol. Chem. 255, 9860–9869.Google Scholar
  8. 8.
    Reed, B.C. & Lane, M.D. (1980) Proc. Nat. Acad. Sci. 77, 285–289.CrossRefGoogle Scholar
  9. 9.
    Kaasuga, M., Kahn, C.R., Hedo, J.A., Van Obberghen, E. & Yamada, K.M. (1981) Proc. Nat. Acad. Sci. 78, 6917–6921.CrossRefGoogle Scholar
  10. 10.
    Eckel, J. & Reinauer, H. (1981) IRCS Med. Sci. 9, 863–864.Google Scholar
  11. 11.
    Whittaker, J., Hammond, V.A. & Alberti, K.G.M.M. (1981) Biochem. Biophys. Res. Comm. 103, 1100–1106.CrossRefGoogle Scholar
  12. 12.
    Terris, S. & Steiner, D.F. (1980) in Insulin: Chemistry, Structure and Function of Insulin and Related Hormones (Brandenburg, D. & Wollmer, A., eds.) Walter de Gruyter, Berlin, pp.277–284.Google Scholar
  13. 13.
    Bershadsky, A.D. & Gelfand, V.I. (1981) Proc. Nat. Acad. Sci. 78, 3610–3613.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jürgen Eckel
    • 1
  • Hans Reinauer
    • 1
  1. 1.Biochemical DepartmentDiabetes Research InstituteDüsseldorf 1W. Germany

Personalised recommendations