Advertisement

Role of Internal Membrane-Located Receptors in Intracellular Trafficking

  • D. James Morré
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 13)

Abstract

Substantial proportions of so-called surface receptors are frequently found associated with internal membranes. In several examples, it has been established rigorously that contamination by fragments of cell surface membrane is not the explanation. Certain receptors such as those for the phosphomannosyl enzymes of lysosomes may serve as recognition signals to direct intracellular trafficking. Others, such as insulin receptors of the Golgi apparatus, may play a regulatory role. The possibility of more than one type of receptor in different parts of the cell binding the same ligand also arises from ganglioside-fibronectin interactions. The need for regulation of intracellular trafficking and the conceivable involvement of membrane-located receptors in this process provide a challenging problem for future studies.

Keywords

Insulin Receptor Golgi Apparatus Lysosomal Enzyme Secretory Vesicle Intracellular Trafficking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morré, D.J., Yunghans, W.N., Vigil, E.L. & Keenan, T.W. (1974) in Subcellular Studies [vol. 4, this series] (Reid, E., ed.), Longman, London, pp. 195–236.Google Scholar
  2. 2.
    Reid, E., Cook, G.M.W. & Morré, D.J., eds. (1982) Cancer Cell Organelles [Vol. 11, this series], Horwood, Chichester, 415 pp.Google Scholar
  3. 3.
    Morré, D.J. (1973) in Molecular Techniques and Approaches in Developmental Biology (Chrispeels, M.J., ed.), John Wiley, New York, pp. 1–27.Google Scholar
  4. 4.
    Loud, A.V. (1962) J. Cell Biol. 15, 481–487.CrossRefGoogle Scholar
  5. 5.
    Jelsema, C.L. & Morré, D.J. (1978) J. Biol. Chem. 253. 7960–7971.Google Scholar
  6. 6.
    Schilling, E.E., Goldenberg, H., Morré, D.J. & Crane, F.L. (1979) Biochim. Biophys. Acta 555, 504–511.CrossRefGoogle Scholar
  7. 7.
    Farquhar, M.G. & Palade, G.E. (1981) J. Cell Biol. 91, 77s–103s.CrossRefGoogle Scholar
  8. 8.
    Farquhar, M.G. (1981) Meths. Cell Biol. 23, 399–427.CrossRefGoogle Scholar
  9. 9.
    Bergeron, J.J.M., Evans, W.H. & Geschwind, I.I. (1973) J. Cell Biol. 59, 771–776.CrossRefGoogle Scholar
  10. 10.
    Bergeron, J.J.M., Posner, B.I., Josefsberg, Z. & Sikstrom, R. (1978) J. Biol. Chem. 253, 4058–4066.Google Scholar
  11. 11.
    Kahn, M.M., Posner, B., Kahn, R.J. & Bergeron, J.J.M. (1982) J. Biol. Chem. 257, 5969–5976.Google Scholar
  12. 12.
    Morré, D.J., Schirrmacher, V., Robinson, P., Hess, K. & Franke, W.W. (1979) Exp: Cell Res. 119, 265–275.CrossRefGoogle Scholar
  13. 13.
    Croze, E.M. & Morré, D.J. (1981) Proc. Nat. Acad. Sci. 78, 1547–1551.CrossRefGoogle Scholar
  14. 14.
    Dobberstein, B., Garoff, H., Warren, G. & Robinson, P.J. (1979) Cell 17, 759–769.CrossRefGoogle Scholar
  15. 15.
    Goldfine, I.D., Vigneri, R., Cohnm, D., Pliam, H.B. & Kahn, C.R. (1977) Nature 269, 698–699.CrossRefGoogle Scholar
  16. 16.
    Yunghans, W.N. & Morré, D.J. (1978) Cytobiologie 17, 165–172.Google Scholar
  17. 17.
    Cheng, H. & Farquhar, M.G. (1976) J. Cell Biol. 70, 671–684.CrossRefGoogle Scholar
  18. 18.
    Neufeld, E.L., Sando, G.N., Garvin, A.J. & Rome, L.H. (1977) J. Supramol. Struct. 6, 95–101.CrossRefGoogle Scholar
  19. 19.
    Sly, W.S. & Stahl, P. (1978) in Transport of Molecules (Silverstein, S., ed.), Life Science Report II. Dahlem Konferenzen, Berlin, pp. 229–245.Google Scholar
  20. 20.
    Gonzales-Noriega, A., Grubb, J.H., Talkad, U. & Sly, W.S. (1980) J. Cell Biol. 85, 839–852.CrossRefGoogle Scholar
  21. 21.
    Von Figura, K. & Weber, E. (1978) Biochem. J. 176, 943–950.Google Scholar
  22. 22.
    Sly, W.S. (1979) in Structure and Function of Gangliosides (Svennerholm, L., ed.), Plenum, New York, pp. 433–451.Google Scholar
  23. 23.
    Fischer, H.D., Gonzales-Noriega, A., Sly, W.S. & Morré, D.J. (1980) J. Biol. Chem. 255, 9608–9615.Google Scholar
  24. 24.
    Tabas, I. & Kornfeld, S. (1980) J. Biol. Chem. 253, 6633–6639.Google Scholar
  25. 25.
    Varki, A. & Kornfeld, S. (1980) J. Biol. Chem. 255, 8390–8401.Google Scholar
  26. 26.
    Kleinman, H.K., Martin, G.R. & Fishman, P.H. (1979) Proc. Nat. Acad. Sci. 76, 3367–3371.CrossRefGoogle Scholar
  27. 27.
    Morré, D.J., Creek, K.E. & Morré, D.M. (1981) in International Cell Biology 1980–1981 (Schweiger, H.G., ed.), Springer-Verlag, Berlin, pp. 800–804.CrossRefGoogle Scholar
  28. 28.
    Hynes, R.O. (1976) Biochim. Biophys. Acta 458, 73–107.Google Scholar
  29. 29.
    Pearlstein, E., Gold, L.I. & Garcia-Pardo, A. (1980) Mol. Cell. Biochem. 29, 103–128.CrossRefGoogle Scholar
  30. 30.
    Matyas, G.R., Werderitsh, D.A., Morré, D.M. & Morré, D.J. (1981) Proc. Ind. Acad. Sci. 80, 161–173.Google Scholar
  31. 31.
    Matyas, G.R., Morré, D.J. & Keenan, T.W. (1982) Fed. Proc. 41, 1170 (Abs.). Google Scholar
  32. 32.
    Evers, D.C. & Morré, D.J. (1982) Fed. Proc. 41, 1430 (Abs.) Google Scholar
  33. 33.
    Reid, E., ed. (1977) Membranous Elements and Movement of Molecules [Vol. 6, this series], Horwood, Chichester, 412 pp.Google Scholar
  34. 34.
    Rothman, J. E. & Fries, E. (1981) I. Cell Biol. 89, 162–168.CrossRefGoogle Scholar
  35. 35.
    Rothman, J.E. (1981) Science 213, 1212–1219.CrossRefGoogle Scholar
  36. 36.
    Morré, D.J., Kartenbeck, J. & Franke, W.W. (1979) Biochim. Biophys. Acta 559, 71–152.CrossRefGoogle Scholar
  37. 37.
    Morré, D.J. (1981) Eur. J. Cell Biol. 26, 21–25.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. James Morré
    • 1
  1. 1.Department of Medicinal Chemistry and Pharmacognosy, Department of Biological Sciences and Purdue Cancer CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations