Advertisement

Subcellular Localization of Maternal Histone mRNAs and the Control of Histone Synthesis in the Sea Urchin Embryo

  • Richard M. Showman
  • Dan E. Wells
  • John A. Anstrom
  • Deborah A. Hursh
  • David S. Leaf
  • Rudolf A. Raff

Abstract

Early α-subtype histone synthesis in the sea urchin embryo occurs using stored naturally synthesized mRNA. Embryonic α-subtype histone mRNAs do not appear until the 16-cell stage. We have examined these maternal α histone mRNAs and demonstrate that, unlike the bulk of maternal mRNAs, they are recruited into polysomes and translated after a 90-min to 2-hr delay following fertilization. Using cell fractionation procedures and in situ autoradiography, we further demonstrate that maternal α histone mRNAs are sequestered within the pronucleus of the mature egg. Appearance of α-subtype histone mRNAs in the polysomes of the zygote correlates with the dissociation of the nuclear envelope prior to first cleavage.

Keywords

Histone mRNAs Maternal mRNAs Nuclear Envelope Breakdown Histone Gene Expression Histone Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K.V. and Lengyel, J.A. (1980). Changing rates of histone synthesis and turnover in Drosophila embryos. Cell 21:717–727.CrossRefGoogle Scholar
  2. Arceci, R.J. and Gross, P.R. (1980). Histone variants and chromatin structure during sea urchin development. Dev. Biol. 80:186–209.CrossRefGoogle Scholar
  3. Borun, T.W., Scharff, M.D., and Robbins, E. (1967). Rapidly labeled polyribosome-associated RNA having the properties of histone message. Proc. Nat. Acad. Sci. USA 58:1977–1983.CrossRefGoogle Scholar
  4. Borun, T.W., Gabreilli, F., Ajiro, K., Zweidler, A., and Baglioni, C. (1975). Further evidence of transcriptional and translational control of histone messenger RNA during the HeLa S3 cycle. Cell 4:59–67.CrossRefGoogle Scholar
  5. Brachet, J., Deeroly, M., Ficq, A., and Quertier, J. (1963). Ribonucleic acid metabolism in unfertilized and fertilized sea urchin eggs. Biochim. Biophys. Acta 72:660–662.CrossRefGoogle Scholar
  6. Brachet, J. and DePetrocellis, B. (1981). The effects of adphidicolin, an inhibitor of DNA replication, on sea urchin development. Exp. Cell Res. 135:179–189.CrossRefGoogle Scholar
  7. Brandhorst, B.P. (1976). Two-dimensional gel patterns of protein synthesis before and after fertilization of sea urchin eggs. Dev. Biol. 52:310–317.CrossRefGoogle Scholar
  8. Brandis, J.W. and Raff, R.A. (1978). Translation of oogenetic mRNA in sea urchin eggs and early embryos. Demonstration of a change in translational efficiency following fertilization. Dev. Biol. 67:99–113.CrossRefGoogle Scholar
  9. Childs, G., Maxson, R., and Kedes, L.H. (1979). Histone gene expression during sea urchin embryogenesis: Isolation and characterization of early and late messenger RNAs of Strongylocentrotus purpuratus by gene-specific hybridization and template activity. Dev. Biol. 73:153–173.CrossRefGoogle Scholar
  10. Citkowitz, E. (1972). Analysis of the isolated hyaline layer of sea urchin embryos. Dev. Biol. 27:494–503.CrossRefGoogle Scholar
  11. Denny, P.C. and Tyler, A. (1964). Activation of protein biosynthesis in non-nucleate fragments of sea urchin eggs. Biochem. Biophys. Res. Commun. 14:245–249.CrossRefGoogle Scholar
  12. Greenhouse, G.A., Hynes, R.O., and Gross, P.R. (1971). Sea urchin embryos are permeable to actinomycin. Science 171:686–689.CrossRefGoogle Scholar
  13. Gross, P.R. and Cousineau, G.H. (1963). Effects of actinomycin-D on macromolecular synthesis and early development of sea urchin eggs. Biochem. Biophys. Res. Cummun. 10:321–326.CrossRefGoogle Scholar
  14. Gross, K.W., Jacobs-Lorena, M., Baglioni, C., and Gross, P.R. (1973). Cell-free translation of maternal messenger RNA from sea urchin eggs. Proc. Nat. Acad. Sci. USA 70:2614–2618.CrossRefGoogle Scholar
  15. Gross, P.R. and Cousineau, G.H. (1964). Macromolecule synthesis and the influence of actinomycin on early development. Exp. Cell Res. 33:368–395.CrossRefGoogle Scholar
  16. Hereford, L.M., Osley, M.A., Ludwig, J.R., and McLaughlin, C.S. (1981). Cell cycle regulation of yeast histone mRNA. Cell 24:367–376.CrossRefGoogle Scholar
  17. Herlands, L., Allfrey, V.G., and Poccia, D. (1982). Translational regulation of histone synthesis in the sea urchin Strongylocentrotus purpuratus. J. Cell Biol. 94:219–223.CrossRefGoogle Scholar
  18. Hille, M.B. and Albers, A.A. (1979). Efficiency of protein synthesis after fertilization of sea urchin eggs. Nature (London) 278:469–471.CrossRefGoogle Scholar
  19. Horstadius, S. (1937). Investigations as to the localization of the micromere-, the skeleton-, and the endoderm-forming material in the unfertilized egg of Arbacia punctulata. Biol. Bull. 73:295–316.CrossRefGoogle Scholar
  20. Jenkins, N.A., Taylor, M.W., and Raff, R.A. (1973). In vitro translation of oogenetic messenger RNA of sea urchins and Picornavirus with a cell-free system from sarcoma-180. Proc. Nat. Acad. Sci. USA 70:3287–3291.CrossRefGoogle Scholar
  21. Kalthoff, K. (1983). Cytoplasmic determinants in dipteran eggs. In “Time, Space, and Pattern in Embryonic Development,” W.R. Jeffery and R.A. Raff (eds.). A.R. Liss, Inc., N.Y.Google Scholar
  22. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.CrossRefGoogle Scholar
  23. Lifton, R.P. and Kedes, L.H. (1976). Size and sequence homology of masked maternal and embryonic histone messenger RNAs. Dev. Biol. 48:47–55.CrossRefGoogle Scholar
  24. Mauron, A., Kedes, L.H., Hough-Evans, B., and Davidson, E.H. (1982). Accumulation of individual histone mRNAs during embryogenesis of the sea urchin Strongylocentrotus purpuratus. Dev. Biol., in press.Google Scholar
  25. Maxson Jr., R.E. and Wilt, F.H. (1982). Accumulation of the early histone messenger RNAs during the development of S purpuratus. Dev. Biol., in press.Google Scholar
  26. Moll, R. and Wintersberger, E. (1976). Synthesis of yeast histones in the cell cycle. Proc. Nat. Acad. Sci. USA 73:1863–1967.CrossRefGoogle Scholar
  27. Morgan, T.H. (1927). “Experimental Embryology.” New York: Columbia University Press.Google Scholar
  28. Poccia, D.L., Levine, D., and Wang, J.C. (1978). Activity of a DNA topoisomerase (nicking-closing enzyme) during sea urchin development and the cell cycle. Dev. Biol. 64:273–283.CrossRefGoogle Scholar
  29. Poccia, D., Salik, J., and Krystal, G. (1981). Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sea urchin egg. Dev. Biol. 82:287–296.CrossRefGoogle Scholar
  30. Raff, R.A., Brandis, J.W., Huffman, C.J., Koch, A.L., and Leister, D.E. (1981). Protein synthesis as an early response to fertilization of the sea urchin egg: A model. Dev. Biol. 86:265–271.CrossRefGoogle Scholar
  31. Raff, R.A., Colot, H.V., Selvig, S.E., and Gross, P.R. (1972). Oogenetic origin of messenger RNA for embryonic synthesis of microtubule proteins. Nature (London) 235:211–214.CrossRefGoogle Scholar
  32. Raff, R.A., Greenhouse, G., Gross, K.W., and Gross, P.R. (1971). Synthesis and storage of microtubule proteins by sea urchin embryos. J. Cell Biol. 50:516–527.CrossRefGoogle Scholar
  33. Rebhun, L.I., White, D., Sander, G., and Ivy, N. (1973). Cleavage inhibition in marine eggs by puromycin and 6-dimethylaminopurine. Exp. Cell Res. 77:312–318.CrossRefGoogle Scholar
  34. Ruderman, J.V. and Gross, P.R. (1974). Histones and histone synthesis in sea urchin development. Dev. Biol. 36:286–298.CrossRefGoogle Scholar
  35. Ruderman, J.V. and Pardue, M.L. (1977). Cell-free translation analysis of messenger RNA in echinoderm and amphibian development. Dev. Biol. 60:48–68.CrossRefGoogle Scholar
  36. Ruderman, J.V. and Schmidt, M.R. (1981). RNA transcription and translation in sea urchin oocytes and eggs. Dev. Biol. 81:220–228.CrossRefGoogle Scholar
  37. Savic, A., Richman, P., Williamson, P., and Poccia, D. (1981). Alterations in chromatin structure during early sea urchin embryogenesis. Proc. Nat. Acad. Sci. USA 78:3706–3710.CrossRefGoogle Scholar
  38. Schroeder, T.E. (1980). Expressions of the prefertilization polar axis in sea urchin eggs. Dev. Biol. 79:428–443.CrossRefGoogle Scholar
  39. Skoultchi, A. and Gross, P.R. (1973). Maternal histone messenger RNA: Detection by molecular hybridization. Proc. Nat. Acad. Sci. USA 70:2840–2844.CrossRefGoogle Scholar
  40. Showman, R.M., Wells, D.E., Anstrom, J., Hursh, D.A., and Raff, R.A. (1982). Message-specific sequestration of maternal histone mRNA in the sea urchin egg. Proc. Nat. Acad. Sci.. USA 79:5944–5947.CrossRefGoogle Scholar
  41. Slater, D.W. and Spiegelman, S. (1966). An estimation of the genetic messages in the unfertilized echinoid egg. Proc. Nat. Acad. Sci. USA 56:164–170.CrossRefGoogle Scholar
  42. Spalding, J., Kaijawara, K., and Mueller, G.C. (1966). An extracted basic protein isolated from HeLa nuclei and resolved by electrophoresis. Proc. Nat. Acad. Sci. USA 56:1535–1542.CrossRefGoogle Scholar
  43. Venezky, D.L., Angerer, L.M., and Angerer, R.C. (1981). Accumulation of histone repeat transcripts in the sea urchin egg pronucleus. Cell 24:385–391.CrossRefGoogle Scholar
  44. Wells, D.E., Bruskin, A.M., O’Brachta, D.A., and Raff, R.A. (1982). Prevalent RNA sequences of mitochondrial origin in sea urchin embryos. Dev. Biol. 92:557–562.CrossRefGoogle Scholar
  45. Wells, D.E., Showman, R.M., Klein, W.H., and Raff, R.A. (1981a). Delayed recruitment of maternal mRNA in sea urchin embryos. Nature 292:477–478.CrossRefGoogle Scholar
  46. Wells, D.E., Showman, R.M., Klein, W.H., and Raff, R.A. (1981b). Translational regulation in sea urchin embryos. Biol. Bull. 161:322.Google Scholar
  47. Wilson, E.B. (1937). “The Cell in Development and Heredity.” New York; MacMillan Pub. Co., 3rd Edition.Google Scholar
  48. Winkler, M.M. and Steinhardt, R.A. (1981). Activation of protein synthesis in a sea urchin cell-free system. Dev. Biol. 84:432–439.CrossRefGoogle Scholar
  49. Woodland, H.R. (1980). Histone synthesis during the development of Xenopus. FEBS Ltrs. 121:1–7.CrossRefGoogle Scholar
  50. Wu, R.S. and Bonner, W.M. (1981). Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell 27:321–330.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard M. Showman
    • 1
  • Dan E. Wells
    • 1
  • John A. Anstrom
    • 1
  • Deborah A. Hursh
    • 1
  • David S. Leaf
    • 1
  • Rudolf A. Raff
    • 1
  1. 1.Program in Molecular, Cellular, and Developmental Biology, Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations