Advertisement

The Yellow Crescent of Ascidian Eggs: Molecular Organization, Localization and Role in Early Development

  • William R. Jeffery
  • Craig R. Tomlinson
  • Richard D. Brodeur
  • Stephen Meier

Abstract

The molecular composition, localization, and role in early development of the yellow crescent cytoplasm is reviewed. The yellow, myoplasmic crescent is a localized cytoplasmic region preferentially distributed to the muscle and mesenchyme lineage cells during early development of ascidian eggs. It consists of a collection of lipid pigment granules with numerous adherent mitochondria underlain by a specific cytoskeletal domain. The yellow crescent cytoskeleton is comprised of a superficial, sub-membrane network of actin filaments (PML) and a more internal filamentous lattice which connects pigment granules and possibly other cytoplasmic organelles to the cell surface. The yellow crescent originates during oogenesis and is uniformly distributed around the periphery of the mature, unfertilized egg. After fertilization the peripheral cytoplasm streams into the vegetal hemisphere forming the yellow crescent. The yellow crescent cytoskeleton, under the direction of local changes in the concentration of calcium ions, seems to be involved in this movement. Although relatively poor in total mRNA, the yellow crescent is highly enriched in mRNA sequences coding for cytoplasmic actin. The enrichment in actin mRNA is due to an association of these molecules with yellow crescent cytoskeletal elements. In general, however, prevalent messages in the yellow crescent region are not qualitatively different from those in other areas of the egg. A wide variety of different proteins are also found in the yellow crescent which are a subset of those present in the whole egg. There is strong evidence that the yellow crescent contains cytoplasmic determinants which are segregated during cleavage and specify muscle cell properties in the cells they enter. The molecular nature and mode of action of these agents, however, remains to be determined.

Keywords

Germinal Vesicle Cytoplasmic Region Pigment Granule Actin mRNA Vegetal Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, L.S., Yocum, R.R., Nothnagel, E.A., and Webb, W.W. (1980). Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1, 3-diazole phallacidin. Proc. Natl. Acad. Sci. USA 77: 980–984.CrossRefGoogle Scholar
  2. Ben-Ze’ev, A., Duerr, A., Solomon, F., and Penman, S. (1979). The outer boundary of the cytoskeleton: A lamina derived from plasma membrane proteins. Cell 17:859–865.CrossRefGoogle Scholar
  3. Berg, W.E. (1956). Cytochrome oxidase in anterior and posterior blastomeres of Ciona intestinalis. Biol. Bull. 110:1–7.CrossRefGoogle Scholar
  4. Berg, W.E. (1957). Chemical analysis of anterior and posterior blastomeres of Ciona intestinalis. Biol. Bull. 113:365–375.CrossRefGoogle Scholar
  5. Berg, W.E. and Humphreys, W.J. (1960). Electron microscopy of four-cell stages of the ascidians Ciona and Styela. Develop. Biol. 2: 42–60.CrossRefGoogle Scholar
  6. Berg, W.E. and Baker, P.C. (1962). Antigens in isolated blastomeres of the ascidians Ciona and Styela. Acta Embryol. Morphol. Exp. 5:274–279.Google Scholar
  7. Berrill, N.J. (1929). Studies in tunicate development. I. General physiology of development of simple ascidians. Phil. Trans. Roy. Soc. London, B, 218:37–78.CrossRefGoogle Scholar
  8. Berrill, N.J. (1932). The mosaic development of the ascidian egg. Biol. Bull. 63:381–386.CrossRefGoogle Scholar
  9. Berrill, N.J. (1968). Tunicata. In “Invertebrate Embryology,” M. Kume and K. Dan (eds.), p. 538–576. National Library of Medicine, Washington D.C.Google Scholar
  10. Bevan, S.J., O’Dell, D.S., and Ortolani, G. (1977). Experimental activation of ascidian eggs. Cell Differentiation 6:313–318.CrossRefGoogle Scholar
  11. Boyles, J. and Bainton, D.F. (1979). Changing patterns of plasma membrane-associated filaments during the initial phases of polymorphonuclear leukocyte adherence. J. Cell Biol. 82:347–368.CrossRefGoogle Scholar
  12. Brandhorst, B.P. and Newrock, K.W. (1981). Post-transcriptional regulation of protein synthesis in Ilyanassa embryos and isolated polar lobes. Develop. Biol. 83:250–254.CrossRefGoogle Scholar
  13. Brothers, A.J. (1979). A specific case of genetic control of early development: The o maternal effect mutation of the Mexican axolotl. In “Determinants of Spatial Organization,” S. Subtelny and I.R. Konigsberg (eds.), p. 167–183. Academic Press, New York.Google Scholar
  14. Cervera, M., Dreyfuss, G., and Penman, S. (1981). Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell 23:1130–120.CrossRefGoogle Scholar
  15. Collier, J.R. and McCarthy, M.E. (1981). Regulation of polypeptide synthesis during early embryogenesis of Ilyanassa obsoleta. Differentiation 19:31–46.CrossRefGoogle Scholar
  16. Conklin, E.G. (1905a). The organization and cell lineage of the ascidian egg. J. Acad. Natl. Sci. Phil. 13:1–119.Google Scholar
  17. Conklin, E.G. (1905b). Organ-forming substances in the eggs of ascidians. Biol. Bull. 8:205–230.CrossRefGoogle Scholar
  18. Conklin, E.G. (1905c). Mosaic development of ascidian eggs. J. Exp. Zool. 2:145–223.CrossRefGoogle Scholar
  19. Conklin, E.G. (1906). Does half an ascidian egg give rise to a whole larva? Roux Archiv. Entwicklungsmech. 21:727–753.CrossRefGoogle Scholar
  20. Conklin, E.G. (1931). The development of centrifuged eggs of ascidians. J. Exp. Zool. 60:1–119.CrossRefGoogle Scholar
  21. Cooke, P.A. (1976). Filamentous cytoskeleton in vertebrate smooth muscle cells. J. Cell Biol. 68:539–556.CrossRefGoogle Scholar
  22. Davidson, E.H. (1976). Gene Activity in Early Development, p. 245–318. Academic Press, New York.Google Scholar
  23. DeSantis, R. and Stopak, D. (1980). Mitochondrial movements in early development of Ciona. Biol. Bull. 159:446.Google Scholar
  24. Durante, M. (1956). Cholinesterase in development of Ciona intestinalis (Ascidia). Experientia 12:307–310.CrossRefGoogle Scholar
  25. Fyrberg, E.A., Kindle, D.L., Davidson, N., and Sodja, A. (1980). The actin genes of Drosophila: A dispersed multigene family. Cell 19:365–378.CrossRefGoogle Scholar
  26. Hainfied, J.F. and Steck, T.L. (1977). The sub-membrane reticulum of the human erythrocyte: A scanning electron microscope study. J. Supramol. Struct. 6:301–311.CrossRefGoogle Scholar
  27. Harvey, L.A. (1927). The history of cytoplasmic inclusions of the egg of Ciona intestinalis during oogenesis and fertilization. Proc. Roy. Soc. London, B, 101:137–161.CrossRefGoogle Scholar
  28. Hitchcock, S.E., Carlsson, L., and Lindberg, U. (1976). Depolymerization of F-actin by deoxyribonuclease I. Cell 7:531–542.CrossRefGoogle Scholar
  29. Hsu, W.S. (1962). An electron microscopic study of the origin of yolk in the oocytes of the ascidian Boltenia villosa. La Cellule 62:145–165.Google Scholar
  30. Hsu, W.S. (1963). The nuclear envelope in the developing oocytes of the tunicate Boltenia villosa. Z. Zeilforsch. 58:17–26.CrossRefGoogle Scholar
  31. Illmensee, K. and Mahowald, A.P. (1974). Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA 71: 1016–1020.CrossRefGoogle Scholar
  32. Jaffe, L.F. (1981). Calcium explosions as triggers of development. Ann. N.Y. Acad. Sci. 399:86–101.Google Scholar
  33. Jeffery, W.R. (1982a). Calcium ionophore polarizes ooplasmic segregation in ascidian eggs. Science 216:545–547.CrossRefGoogle Scholar
  34. Jeffery, W.R. (1982b). Messenger RNA in the cytoskeletal framework: Analysis by in situ hybridization. J. Cell Biol. 95:1–7.CrossRefGoogle Scholar
  35. Jeffery, W.R. (1983a). Maternal mRNA localization in ascidian eggs: Involvement of the cytoskeleton. Submitted.Google Scholar
  36. Jeffery, W.R. (1981). Messenger RNA localization and cytoskeletal domains in ascidian embryos. In “Time, Space, and Pattern in Embryonic Development,” W.R. Jeffery and R.A. Raff (eds.). A.R. Liss, New York, in press.Google Scholar
  37. Jeffery, W.R. and Capco, D.G. (1978). Differential accumulation and localization of maternal poly(A)-containing RNA during early development of the ascidian, Styela. Develop. Biol. 67:152–166.CrossRefGoogle Scholar
  38. Jeffery, W.R. and Meier, S. (1983). A yellow crescent cytoskeletal domain in ascidian eggs and its role in early development. Develop. Biol., in press.Google Scholar
  39. Jeffery, W.R., Tomlinson, C.R., and Brodeur, R.D. (1983). Localization and segregation of cytoplasmic-type actin messenger RNA during early ascidian development, submitted.Google Scholar
  40. Kalthoff, K. (1979). Analysis of a morphogenetic determinant in an insect embryo (Smittia spec, Chironomidae, Diptera). In “Determinants of Spatial Organization,” S. Subtelny and I.R. Konigsberg (eds.), p. 97–126. Academic Press, New York.Google Scholar
  41. Kessel, R.G. and Beams, H.W. (1965). An unusual configuration of the Golgi complex in pigment-producing “test” cells of the ovary of the tunicate, Styela. J. Cell Biol. 25:55–67.CrossRefGoogle Scholar
  42. Lenk, R., Ranson, L., Kaufman, Y., and Penman, S. (1977). A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 10:67–78.CrossRefGoogle Scholar
  43. Lifton, R.P., Goldberg, M.L., Karp, R.W., and Hogness, D.S. (1977). The organization of the histone genes in Drosophila melanogaster: Functional and evolutionary implications. Cold Spr. Harb. Sym. Quant. Biol. 42:1047–1051.CrossRefGoogle Scholar
  44. Mahowald, A.P., Allis, C.D., Karrer, K.M., Underwood, E.M., and Waring, G.L. (1979). Germ plasm and pole cells of Drosophila. In “Determinants of Spatial Organization,” S. Subtelny and I.R. Konigsberg (eds.), p. 127–146. Academic Press, New York.Google Scholar
  45. Mancuso, V. (1963). Distribution of the components of normal unfertilized eggs of Ciona intestinalis. Acta Embryol. Morph. Exp. 5:71–81.Google Scholar
  46. Monroy, A., Ortolani, G., O’Dell, D., and Millonig, G. (1973). Binding of concanavalin A to the surface of unfertilized and fertilized ascidian eggs. Nature 242:409–410.CrossRefGoogle Scholar
  47. Morgan, T.H. (1934). Embryology and Genetics. Columbia Univ. Press, New York.Google Scholar
  48. O’Dell, D.S., Ortolani, G., and Monroy, A. (1974). Increased binding of concanavalin A during maturation of ascidian eggs. Exp. Cell Res. 83:408–411.CrossRefGoogle Scholar
  49. Ortolani, G. (1955a). The presumptive territory of the mesoderm in the ascidian germ. Experienta 11:445–446.CrossRefGoogle Scholar
  50. Ortolani, G. (1955b). I movementi corticali dell uovo di Ascidie alla fecondaziona. Riv. Biol. 47:169–181.Google Scholar
  51. Ortolani, G., O’Dell, D.S., and Monroy, A. (1977). Localized binding of Dolichos lectin to the early Ascidia embryo. Exp. Cell Res. 106:402–404.CrossRefGoogle Scholar
  52. Pisano, A. (1949). Lo sviluppo dei primi due blastomeri separati dell’ uovo di Ascidie. Pubbl. Staz. Zool. Napoli. 22:16–25.Google Scholar
  53. Pucci-Minafra, I. and Ortolani, G. (1968). Differentiation and tissue interaction during muscle development of ascidian tadpoles. An electron microscope study. Develop. Biol. 17:692–712.Google Scholar
  54. Raju, T.R., Stewart, M., and Buckley, I.K. (1978). Selective extraction of cytoplasmic actin-containing filaments with DNA-ase I. Cytobiol. 17:307–311.Google Scholar
  55. Reverberi, G. (1956). The mitochondrial pattern in the development of the ascidian egg. Experientia 12:55–60.CrossRefGoogle Scholar
  56. Reverberi, G. (1961). The embryology of ascidians. Adv. Morph. 1:55–101.Google Scholar
  57. Reverberi, G. (1975). On some effects of cytochalasin B on the eggs and tadpoles of ascidians. Acta Embryol. Exp. 2:137–158.Google Scholar
  58. Reverberi, G. and Pitotti, M. (1939). Differenziazione fisiologiche nell’ uovo della Ascidie. Pontif. Acad. Sci. Comment. 3:469–488.Google Scholar
  59. Reverberi, G. and Minganti, A. (1946). Fenomeni di evocazione nello sviluppo dell’ uovo di Ascidie. Risultati dell’ indagine spermimen-tale sull’ uovo di Ascidiella aspersa e di Ascidia malaca. Pubbl. Staz. Zool. Napoli. 16:363–401.Google Scholar
  60. Ries, E. (1937). Die Verteilung von Vitamin C, Gluthation, Benzidin Peroxydase, Phenolase and Leukomethylenblau-Oxydoreductase wahrend der fruhen Embryonalentwicklung verschiedener wirbelloser Tiere. Pubbl. Staz. Zool. Napoli. 16:363–401.Google Scholar
  61. Robinson, K.R. and Cone, R. (1980). Polarization of fucoid eggs by a calcium ionophore gradient. Science 207:77–78.CrossRefGoogle Scholar
  62. Sawada, T. and Osanai, K. (1981). The cortical contraction related to ooplasmic segregation in Ciona intestinalis eggs. Wilhelm Roux’ Archiv. 190:208–214.Google Scholar
  63. Sheetz, M. (1979). Integral membrane protein interaction with Triton cytoskeletons of erythrocytes. Biochem. Biophys. Acta 557:122–134.CrossRefGoogle Scholar
  64. Spek, J. (1926). Uber gesetzmassige Substanverteilungen bei der Durchung des Ctenophoreneies und ihre Beziehungen zu den Determinations Problemen. Roux. Arch. Entwicklungsmech. 107:54–73.CrossRefGoogle Scholar
  65. Steinhardt, R.A., Epel, D., Carroll, E.J., and Yanagamachi, R. (1974). Is calcium ionophore a universal activator for unfertilized eggs? Nature 252:41–43.CrossRefGoogle Scholar
  66. Tufaro, F. and Brandhorst, B.P. (1979). Similarity of proteins synthesized by isolated blastomeres of sea urchin embryos. Develop. Biol. 72:390–397.CrossRefGoogle Scholar
  67. Tung T. (1934). Recherches sur les potentialites des blastomeres chez Ascidella scabra. Experiences de translocation, de combinaison et d’isolement de blastomeres. Arch. Anat. Micros. 30:381–410.Google Scholar
  68. Tung, T., Ku, S., and Tung, Y. (1941). The development of the ascidian egg centrifuged before fertilization. Biol. Bull. 80:153–168.CrossRefGoogle Scholar
  69. von Ubisch, L. (1940). Weitere Unterschungen uber Regulation und Determination im Ascidienkeim. Roux. Arch. Entwicklungsmech. 140:1–24.CrossRefGoogle Scholar
  70. Ursprung, H. and Schabtach, E. (1964). The fine structure of the egg of Ascidia nigra. J. Exp. Zool. 156:253–268.CrossRefGoogle Scholar
  71. Whittaker, J.R. (1973). Segregation during ascidian embryogenesis of egg cytoplasmic information for tissue-specific enzyme development. Proc. Natl. Acad. Sci. USA 70:2096–2100.CrossRefGoogle Scholar
  72. Whittaker, J.R. (1977). Segregation during cleavage of a factor determining endodermal alkaline phosphatase development in ascidian embryos. J. Exp. Zool. 202:139–154.CrossRefGoogle Scholar
  73. Whittaker, J.R. (1979). Development of tail muscle acetylcholinesterase in ascidian embryos lacking mitochondrial localization and segregation. Biol. Bull. 157:344–355.CrossRefGoogle Scholar
  74. Whittaker, J.R. (1980). Acetylcholinesterase development in extra cells caused by changing the distribution of myoplasm in ascidian embryos. J. Embryol. Exp. Morphol. 55:343–354.Google Scholar
  75. Whittaker, J.R. (1982). Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos. Develop. Biol. 93:463–470.CrossRefGoogle Scholar
  76. Wilson, E.B. (1925). The Cell in Development and Heredity, 3rd edition, p. 1035–1121. MacMillan, New York.Google Scholar
  77. Zalokar, M. (1974). Effect of colchicine and cytochalasin B on ooplasmic segregation of ascidian eggs. Wilhelm Roux’ Archiv. 175:243–248.Google Scholar
  78. Zalokar, M. (1980). Effect of cell surface binding on development of ascidian egg. Wilhelm Roux’ Archiv. 187:35–47.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William R. Jeffery
    • 1
  • Craig R. Tomlinson
    • 1
  • Richard D. Brodeur
    • 1
  • Stephen Meier
    • 1
  1. 1.Department of ZoologyUniversity of TexasAustinUSA

Personalised recommendations