Pions From and about Heavy Ions

  • J. O. Rasmussen
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 104)


When nuclei collide at energies in the center-of-mass system that exceed the rest mass energy of the pion of 140 MeV, it is energetically possible to produce a pion. I recall from a dozon years ago a flurry of excitement over the possibility that pions might be observable from heavy ion linear accelerators and cyclotrons at the modest heavy ion energies then available. I was working at the old Yale Heavy Ion Accelerator at the time, and on a visit to the University of Maryland it was suggested to me that we ought to look for pions with the 400 MeV argon ion beams at the Yale HIA. Though it sounded unlikely that all the nucleons could somehow concentrate their energy into producing a pion, it was argued that there was a coherence effect among the various nucleon-nucleon collisions that would greatly enhance pion production. The skeptics argued that if this coherence worked as advertised, the best way of making pions would be to drop an elephant into a pit—total energy well above threshold and a tremendous number of nucleons to act coherently.


Blast Wave Neutron Density Mass Singularity Projectile Fragment Coulomb Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Wall, J. N. Craig and D. Enrow, Nucl. Phys. A214:459 (1976).ADSGoogle Scholar
  2. 2.
    W. Schiiranerling et al., Phys. Rev. Lett. 33:1170 (1974)ADSCrossRefGoogle Scholar
  3. 2a.
    K. G. Vosburgh et al., Phys. Rev. D11:1743 (1975).ADSGoogle Scholar
  4. 3.
    W. Benenson et al., Phys. Rev. Lett. 43:683 (1979)ADSCrossRefGoogle Scholar
  5. 3a.
    W. Benenson et al., errata 44:54 (1980).Google Scholar
  6. 4.
    B. Jakobsson, “Light Particle Production in 12C Induced Reactions at CERN SC Energies,” Univ. of Lund report LUIP (1982).Google Scholar
  7. 5.
    Y. Le Bornec et al., Phys. Rev. Lett. 47:1870 (1981).ADSCrossRefGoogle Scholar
  8. 6.
    S. Nagamiya et al., Phys. Rev. C24:971 (1981).ADSGoogle Scholar
  9. 7.
    P. J. Siemens and J. O. Rasmussen, Phys. Rev. Lett. 42:844 (1979).CrossRefGoogle Scholar
  10. 8.
    H. Stocker, J. A. Maruhn and W. Greiner, Phys. Rev. Lett. 44: 725 (1980).ADSCrossRefGoogle Scholar
  11. 9.
    M. Gyulassy, K. A. Frankel and H. Stocker, Phys. Lett. HOB:185 (1982).ADSGoogle Scholar
  12. 10.
    S. Nagamiya, Proc. Fifth High Energy Heavy Ion Study, Berkeley (May, 1981), LBL Report No. 12652, p. 141 (see Fig. 33).Google Scholar
  13. 11.
    C. Y. Wong, Proc. Fifth High Energy Heavy Ion Study, Berkeley (May, 1981), LBL Report No. 12652, p. 61.Google Scholar
  14. 12.
    Y. Yariv and Z. Fraenkel, Phys. Rev. C20:2227 (1979).ADSGoogle Scholar
  15. 13.
    J. Cugnon, Phys. Rev. C22.–1885 (1980).ADSGoogle Scholar
  16. 14.
    S. Das Gupta, Phys. Rev. Lett. 41:1451 (1978).ADSCrossRefGoogle Scholar
  17. 15.
    S. Das Gupta and C. S. Lam, Phys. Rev. C21:1192 (1979).ADSGoogle Scholar
  18. 16.
    H. M. A. Radi, J. O. Rasmussen, K. A. Frankel, J. P. Sullivan and H. C. Song, LBL Report No. 13768, submitted to Phys. Rev.Google Scholar
  19. 17.
    M. I. Sobel et al., Nucl. Phys. A251:512 (1975).ADSGoogle Scholar
  20. 18.
    J. W. Negele and K. Yazaki, Phys. Rev. Lett. 47:71 (1981).ADSCrossRefGoogle Scholar
  21. 19.
    H. H. Heckman, D. E. Greiner, P. J. Lindstrom and H. Shwe, Phys. Rev. C17:1735 (1978).ADSGoogle Scholar
  22. 20.
    J. Knoll. Proc. Fifth High Energy Heavy Ion Study, Berkeley (May, 1981), LBL Report No. 12652, p. 210.Google Scholar
  23. 21.
    J. O. Rasmussen, Proc. Relativistic Heavy Ion Winter School, Banff (Feb., 1982), also LBL Report No. 14174.Google Scholar
  24. 22.
    K. Nakai et al., Phys. Rev. C20:2210 (1979).ADSGoogle Scholar
  25. 23.
    K. L. Wolf et al., Phys. Rev. Lett. 42:1448 (.1979).ADSCrossRefGoogle Scholar
  26. 24.
    J. P. Sullivan et al., Phys. Rev. C25:1499 (1982).ADSGoogle Scholar
  27. 25.
    J. P. Sullivan, Ph.D. Thesis, U. C. Berkeley, LBL Report No. 12546, unpublished.Google Scholar
  28. 26.
    D. Murphy et al., Bull. Am. Phys. Soc 26:1148 (1981).Google Scholar
  29. 27.
    H. M. A. Radi, J. O. Rasmussen, J. P. Sullivan, K. A.. Frankel O. Hashimoto, Phys. Rev. C25:1518 (1982).Google Scholar
  30. 28.
    R. G. Libbrecht and S. E. Koonin, Phys. Rev. Lett. 43:1581 (1979)ADSCrossRefGoogle Scholar
  31. 29.
    K. A. Frankel et al., Phys. Rev. C25:1102 (1982).ADSGoogle Scholar
  32. 30.
    K. L. Wolf et al., “Pion Production and Charged-Particle Multiplicity Selection in Relativistic Nuclear Collisions,” preprint, submitted to Phys. Rev. D.Google Scholar
  33. 31.
    H. Kitazoe and M. Sano, Lett. Nuovo Cim. 14:400 (1975).CrossRefGoogle Scholar
  34. 32.
    J. Zimanyi, G. Fai and B. Jakobsson, Phys. Rev. Lett. 43:1705 (1979).ADSCrossRefGoogle Scholar
  35. 33.
    A. B. Migdal, Rev. Mod. Phys. 50:107 (1978).ADSCrossRefGoogle Scholar
  36. 34.
    R. F. Sawyer and D. J. Scalapino, Phys. Rev. D7:953 (1973).ADSGoogle Scholar
  37. 35.
    T. E. O. Ericson and F. Myhrer, Phys. Lett. 74B.-163 (1978).ADSGoogle Scholar
  38. 36.
    V. B. Mandelzweig, A. Gal and E. Friedman, Ann. Phys. (N.Y.) 124:124 (1980).ADSCrossRefGoogle Scholar
  39. 37.
    W. C. McHarris and J. O. Rasmussen, “Anomalons as Pineuts Bound to Nuclear Fragments: A Possible Explanation”, LBL Report No. 14075, to be revised and resubmitted to Phys. Lett.Google Scholar
  40. 38.
    J. A. Carr, H. McManus and K. Stricker-Bauer, Phys. Rev. C25: 952 (1982).ADSGoogle Scholar
  41. 39.
    H. H. Heckman, “Anomalons”, LBL Report No. 14562, to be published in the Yearbook of Science and Technology, McGraw Hill, New York, NY (1982).Google Scholar
  42. 40.
    E. Friedlander et al., Phys. Rev. Lett. 45:1084 (1980).ADSCrossRefGoogle Scholar
  43. 41.
    P. L. Jain and G. Das, Proc. Fifth High Energy Heavy Ion Study, Berkeley, (May, 1981), LBL Report No. 12652, p. 404Google Scholar
  44. 41a.
    P. L. Jain and G. Das, Phys. Rev. Lett. 48:305 (1982).ADSCrossRefGoogle Scholar
  45. 42.
    H. B. Barber et al., Phys. Rev. Lett. 45:1084 (1980).CrossRefGoogle Scholar
  46. 43.
    Y. Karant, LBL Report No. 9171 (1979).Google Scholar
  47. 44.
    W. J. Romo and P. J. Watson, Phys. Lett. 88B:354 (1979).ADSGoogle Scholar
  48. 45.
    S. Fredriksson and J. Jandel, Royal Inst, of Technology, Stockholm Report TRITA-TFY-81811 (1981).Google Scholar
  49. 46.
    J. Boguta, LBL Report No. 14753, submitted to Phys. Rev. Lett. (1982) and LBL Report No. 14446, submitted to Phys. Lett. (1982).Google Scholar
  50. 47.
    R. Van Dantzig and J. M. Van der Velden, preprint NIKHEF, Amsterdam, and private communication (1981).Google Scholar
  51. 48.
    F. J. Dyson and N.-H. Xuong, Phys. Rev. Lett. 13:815 (1964).ADSCrossRefGoogle Scholar
  52. 49.
    T. Kamae and T. Fujita, Phys. Rev. Lett. 38:471 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. O. Rasmussen
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations