Advertisement

Nuclear Chromodynamics: Implications of QCD for Nuclear Physics

  • S. J. Brodsky
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 104)

Abstract

In these lectures we will discuss the synthesis of quantum chromodynamics with nuclear physics: nuclear chromodynamics.1 In quantum chromodynamics, QCD, the fundamental degrees of freedom of hadrons and nuclei are the quanta of quark and gluon gauge fields which obey an exact internal SU(3) color symmetry.2 If QCD is correct, then by extension it must also be the fundamental theory of nuclear forces and nuclear physics. Thus one of the most interesting questions in nuclear physics is the transition between the conventional meson-nucleon degrees of freedom to the quark and gluon degrees of freedom of QCD. As we probe to shorter distances then the meson-nucleon degrees of freedom must break down; thus we will be interested in new nuclear phenomena, new physics intrinsic to composite nucleons and mesons, and new phenomena outside the range of traditional nuclear physics.

Keywords

Form Factor Anomalous Dimension Large Momentum Transfer Nucleon Form Factor Deuteron Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For additional discussion of applications of QCD to Nuclear Physics and references see S. J. Brodsky, in: “New Horizons in Electromagnetic Physics,” J. V. Noble and R. R. Whitney, eds., University of Virginia, Charlottesville (1983).Google Scholar
  2. 2a.
    Reviews of QCD are given in: A. J. Buras, Rev. Mod. Phys. 52: 199 (1980)ADSCrossRefGoogle Scholar
  3. 2b.
    A. H. Mueller, Phys. Rep. 73C:237 (1981)ADSCrossRefGoogle Scholar
  4. 2c.
    E. Reya, Phys. Rep. 69:195 (1981)ADSCrossRefGoogle Scholar
  5. 2d.
    W. Marciano and H. Pagels, Phys. Rep. 36C:137 (1978)ADSCrossRefGoogle Scholar
  6. 2e.
    S. J. Brodsky and G. P. Lepage, Proceedings of the SLAC Summer Inst, on Particle Physics, 1979.Google Scholar
  7. 3.
    For other reviews of the phenomenology of QCD see A. J. Buras, FERMILAB-CONF-81/69-THY and A.H. Mueller, CU-TP-219 (1981), in the Proc. of the 1981 International Symposium on Lepton and Photon Interactions at High Energies, Bonn, August 1981.Google Scholar
  8. 4.
    H. D. Politzer, Phys. Rev. Lett. 30:1346 (1973)ADSCrossRefGoogle Scholar
  9. 4a.
    D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30:123 (1973).CrossRefGoogle Scholar
  10. 5.
    See, for example, S. J. Brodsky, SLAC-PUB-2970, presented at the XIIIth International Symposium on Multiparticle Dynamics, Volemdam (1982).Google Scholar
  11. 6.
    Non-perturbative effects can lead to an effective gluon mass in the gluon propagator, thus eliminating the problem of Van der Waals forces in QCD. See J. M. Cornwall, Phys. Rev. D26:1453 (1982).ADSGoogle Scholar
  12. 7.
    S. J. Brodsky, С R. Ji, and G. P. Lepage, SLAC report SLAC-PUB-3064.Google Scholar
  13. 8.
    G. P. Lepage and S. J. Brodsky, Phys. Rev. D22:2157 (1980) andADSGoogle Scholar
  14. 8a.
    G. P. Lepage and S. J. Brodsky, Phys. Rev. D22:2157 (1980).ADSGoogle Scholar
  15. 9.
    S. J. Brodsky and B. Т. Chertok, Phys. Rev. Lett. 37:269 (1976)ADSCrossRefGoogle Scholar
  16. 9a.
    S. J. Brodsky and В. T. Chertok, Phys. Rev. D14:3003 (1976)ADSGoogle Scholar
  17. 9b.
    S. J. Brodsky, in: “Few Body Problems in Nuclear and Particle Physics,” R. J. Slobodrian, B. Cujec and K. Ramavatram, eds., Université Laval, Québec (1975).Google Scholar
  18. 10.
    S. J. Brodsky and G. P. Lepage, Phys. Rev. Lett. 43:545,1625(E) (1979)ADSCrossRefGoogle Scholar
  19. 10a.
    S. J. Brodsky, G. P. Lepage, S. A. A. Zaidi, Phys. Rev. D23:1152 (1981).ADSGoogle Scholar
  20. 11.
    S. J. Brodsky and J. R. Hiller, SLAC report SLAC-PUB-3047.Google Scholar
  21. 12.
    Qualitative QCD-based arguments for the repulsive N-N potential at short distances are given in C. Detar, Helsinki University report HU-TFT-82–6; M. Harvey, this volumeGoogle Scholar
  22. 12a.
    R. L. Jaffe, Phys. Rev. Lett. 24:228 (1983).ADSCrossRefGoogle Scholar
  23. 12b.
    R. L. Jaffe, The possibility that the deuteron form factor is dominated at large momentum transfer by hidden color components is discussed in V. A. Matveev and P. Sorba, Nuovo Cim. 45A:257 (1978)ADSGoogle Scholar
  24. 12c.
    V. A. Matveev and P. Sorba, Nuovo Cim. Lett. 20:435 (1977).CrossRefGoogle Scholar
  25. 13.
    Early references to light-cone perturbation theory are P. A. M. Dirac, Rev. Mod. Phys. 21:392 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 13a.
    S. Weinberg, Phys. Rev. 150:1313 (1966)ADSCrossRefGoogle Scholar
  27. 13b.
    J. D. Bjorken, J. Kogut and D. E. Soper, Phys. Rev. D3:1382 (1971)ADSGoogle Scholar
  28. 13c.
    S. J. Brodsky, R. Roskies and R. Suaya, Phys. Rev. D8.–4574 (1973).ADSGoogle Scholar
  29. 14.
    G. P. Lepage, S. J- Brodsky, T. Huang, and P. B. Mackenzie, Cornell University report 82/522Google Scholar
  30. 14a.
    S. J. Brodsky and G. P. Lepage, Phys. Rev. D24:1808 (1981).ADSGoogle Scholar
  31. 15.
    S. J. Brodsky and S. D. Drell, Phys. Rev. D22.–2236 (1981).ADSGoogle Scholar
  32. 16.
    S. J. Brodsky, T. Huang, G. P. Lepage, SLAC report SLAC-PUB-2540; T. Huang, SLAC report SLAC-PUB-2580.Google Scholar
  33. 17.
    S. J. Brodsky, Y. Frishman, G. P. Lepage and C. Sachrajda, Phys. Lett. 91B:239 (1980)ADSGoogle Scholar
  34. 17a.
    M. Peskin, Phys. Lett. 88B:128 (1979).ADSGoogle Scholar
  35. 18.
    A. V. Efremov and A. V. Radyushkin, Rev. Nuovo Cim. 3:1 (1980)MathSciNetCrossRefGoogle Scholar
  36. 18a.
    A. V. Efremov and A. V. Radyushkin, Phys. Lett. 94B:245 (1980)ADSGoogle Scholar
  37. 18b.
    A. V. Efremov and A. V. Radyushkin, See also G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 43:246 (1979)ADSCrossRefGoogle Scholar
  38. 18c.
    V. L. Chernyak and A. R. Vhitnishii, JETP Lett. 25:11 (1977)Google Scholar
  39. 18d.
    G. Parisi, Phys. Lett. 43:246 (1979)CrossRefGoogle Scholar
  40. 18e.
    M. K. Chase, Nucl. Phys. B167:125 (1980)ADSCrossRefGoogle Scholar
  41. 18f.
    E. Braaten, to be publishedGoogle Scholar
  42. 18g.
    R. D. Field, R. Gupta, S. Otto, L. Chang, Nucl. Phys. B186:429 (1981)ADSCrossRefGoogle Scholar
  43. 18h.
    F. M. Dittes and A. V. Radyushkin, Dubna report JINR-E2–80–688.Google Scholar
  44. 19.
    A. Duncan and A. H. Mueller, Phys. Lett. 90B:139 (1980)ADSGoogle Scholar
  45. 19a.
    A. Duncan and A. H. Mueller Phys. Rev.s D21:1636 (1980). A. H. Mueller, Ref. 1.MathSciNetADSGoogle Scholar
  46. 20.
    S. J. Brodsky and G. P. Lepage, Phys. Rev. D24:2848 (1980).ADSGoogle Scholar
  47. 21.
    S. J. Brodsky and G. P. Lepage, in: “Quantum Chromodynaraics,” Wm. Frazer and F. Henyey, eds., AIP, New York (1979)Google Scholar
  48. 21a.
    S. J. Brodsky and G. P. Lepage, Phys. Lett. 873:359 (1979)Google Scholar
  49. 21b.
    S. J. Brodsky and G. P. Lepage, Phys. Rev. Lett. 43:545 (1979), erratum ibid. 43:1625 (1979) S. J. Brodsky and G. P. Lepage, Ref. 1.Google Scholar
  50. 22.
    S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31:1153 (1973)ADSCrossRefGoogle Scholar
  51. 22a.
    S. J. Brodsky and G. R. Farrar, Phys. Rev. Dll:1309 (1975)ADSGoogle Scholar
  52. 22b.
    V. A. Matveev, R. M. Muradyan and A. V. Tavkheldize, Lett. Nuovo Cim. 7:719 (1973).CrossRefGoogle Scholar
  53. 23.
    M. D. Mestayer, SLAC report 214.Google Scholar
  54. 24.
    P. V. Landshoff and D. J. Pritchard, Cambridge University report DAMTP 80/04, and references therein.Google Scholar
  55. 25.
    F. Martin et al., Phys. Rev. Lett. 38:1320 (1977)ADSCrossRefGoogle Scholar
  56. 25a.
    W. P. Schutz et al., Phys. Rev. Lett. 38:259 (1977)ADSCrossRefGoogle Scholar
  57. 25b.
    R. G. Arnold et al., Phys. Rev. Lett. 40:1429 (1978)ADSCrossRefGoogle Scholar
  58. 25c.
    В. T. Chertok, Phys. Lett. 41:1155 (1978)CrossRefGoogle Scholar
  59. 25d.
    D. Day et. al., Phys. Rev. Lett. 43:1143 (1979). Summaries of the data for nucleon and nuclear form factors at large Q2 are given in В. Т. Chertok, in: Progress in Particle and Nuclear Physics, Proc. of the Int. School of Nuclear Physics, 5th Course, Erice (1978), and Proc. of the XVI Rencontre de Moriond, Les Arcs, Savoie, France, 1981.ADSCrossRefGoogle Scholar
  60. 26.
    S. J. Brodsky, Ref. 9. For speculations on the role of hidden color see V. A. Matveev and P. Sorba, Nuovo Cim. Lett. 20: 435 (1977); A. P. Kobushkin, Kiev report ITF-77–113E; V. M. Dubovik and A. P. Kobushkin, Kiev report ITF-78–85E; Y. J. Karant, LBL report 9171CrossRefGoogle Scholar
  61. 26a.
    W. J. Romo and P. J. S. Watson, Phys. Lett. 88B:354 (1979).ADSGoogle Scholar
  62. 27.
    R. G. Arnold et al., Phys. Rev. Lett. 35:776 (1975); R. G. Arnold, SLAC-PUB-2373 (1979).ADSCrossRefGoogle Scholar
  63. 28.
    P. V. Landshoff and J. С Polkinghorne, Phys. Lett. 44B:293 (1973).ADSGoogle Scholar
  64. 29.
    A. H. Mueller, Ref. 3.Google Scholar
  65. 30.
    R. Blankenbecler, S. J. Brodsky and J. F. Gunion, Phys. Rev. D18:900 (1978), and references thereinADSGoogle Scholar
  66. 30a.
    D. Sivers, R. Blankenbecler and S. J. Brodsky, Phys. Rep. 23C:1 (1976).ADSCrossRefGoogle Scholar
  67. 31.
    G. Farrar, S. Gottlieb, D. Sivers and G. Thomas, Phys. Rev. D20:202 (1979)ADSGoogle Scholar
  68. 31a.
    S. J. Brodsky, С. E. Carlson and H. J. Lipkin, Phys. Rev. D20:2278 (1979).ADSGoogle Scholar
  69. 32.
    J. Szwed, Acta. Phys. Polonica, B14:55 (1983)Google Scholar
  70. 32a.
    See also M. Chemtob, Nuovo Cim. 71A:477 (1982), and Ref. 5.ADSCrossRefGoogle Scholar
  71. 33.
    For a recent discussion, see S. J. Brodsky, E. L. Berger, and G. P. Lepage, SLAC report SLAC-PUB-3027.Google Scholar
  72. 34.
    S. J. Brodsky and R. Blankenbecler, Phys. Rev. D10:2973 (1974)ADSGoogle Scholar
  73. 34a.
    J. F. Gunion, Phys. Lett. 88B:150 (1979), and references therein.ADSGoogle Scholar
  74. 35.
    R. Blankenbecler and I. Schmidt, Phys. Rev. D16:1318 (1977). See also Refs. 14,16,26, andADSGoogle Scholar
  75. 35a.
    L. I. Frankfurt and M. I. Strikman, Leningrad report’559 (1980)Google Scholar
  76. 35b.
    M. Chemtob, Nucl. Phys. A336:299 (1980); J. M. Namyslowski and P. Danielewicz, Warsaw report IFT/8/80; D. Kusno and M. Moravscik, Trieste report IC/80/52, and references therein.ADSGoogle Scholar
  77. 36.
    G. Bertsch, S. J. Brodsky, A. S. Goldhaber and J. F. Gunion, Phys. Rev. Lett. 47:297 (1981).ADSCrossRefGoogle Scholar
  78. 37.
    S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25:316 (1970). Possible complications in the parton model prediction due to “wee parton” exchange are discussed in this paper.ADSCrossRefGoogle Scholar
  79. 38.
    H. D. Politzer, Nucl. Phys. B129:301 (1977)ADSCrossRefGoogle Scholar
  80. 38a.
    R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer and G. C. Ross, Nucl. Phys. B152:285 (1979)ADSCrossRefGoogle Scholar
  81. 38b.
    S. Gupta and A. H. Mueller, Phys. Rev. D20:118 (1979). A discussion of final state interactions and possible problems with factorization for the Drell-Yan process is given in J. C. Collins and D. E. Soper, Proceedings of the Moriond Workshop, Les Arcs, France (1981).ADSGoogle Scholar
  82. 39.
    G. T. Bodwin, S. J. Brodsky and G. P. Lepage, Phys. Rev. Lett. 47:1799 (1981); in.: “Proceedings of the 1981 Banff Summer School on Particles and Fields,” A. N. Kamal and A. Capri, eds., Plenum, New York (1983).ADSCrossRefGoogle Scholar
  83. 40.
    W. W. Lindsay, D. A. Ross, and C. T. Sachrajda, Southampton University report SHEP-81/82 (1982), and Phys. Lett. 117B: 105 (1982).ADSGoogle Scholar
  84. 41.
    J. С Collins, D. E. Soper, and G. Sterman, ITP-SB-82–46 (1982), and Phys. Lett. 109B:388 (1982).ADSGoogle Scholar
  85. 42.
    C.A. Nelson, SUNY Binghampton report 11/25/82.Google Scholar
  86. 43.
    G. Bodwin, S. J. Brodsky, and G. P. Lepage, to be published.Google Scholar
  87. 44.
    L. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92:535 (1953).MATHGoogle Scholar
  88. 45.
    This prediction has also been discussed by A. H. Mueller, Proc. of the 1982 Moriond Conference.Google Scholar
  89. 46.
    G. T. Bodwin, S. J. Brodsky, G. P. Lepage, Ref. 39.Google Scholar
  90. 47.
    С. Shakin, private communication.Google Scholar
  91. 48.
    European Muon Collaboration, J. Aubert et al., CERN report CERN-EP/83–14 (1983).Google Scholar
  92. 49.
    The Role of Electromagnetic Interactions in Nuclear Science, A report of the DOE/NSP Nuclear Science Advisory Committee. Subcommittee on Electromagentic Interactions, P. D. Barnes, chairman, 1982. For a discussion of the design parameters for intermediate-energy, high duty factor electron beams see J. M. Laget, Proceedings of the Lund Workshop, 1982.Google Scholar
  93. 50.
    D. R. Yennie, unpublished S. J. Brodsky, in “Atomic Physics and Astrophysics,” M. Chretien and E. Kipworth, eds., Gordon and Breach, New York (1971).Google Scholar
  94. 51.
    For practical approximations to the Bethe-Salpeter equation, see G. P. Lepage, Phys. Rev. A16:863 (1977)ADSGoogle Scholar
  95. 51a.
    W. E. Caswell and G. P. Lepage, Phys. Rev. A18:810 (1978).ADSGoogle Scholar
  96. 51b.
    See also F. Gross, Carnegie Mellon report (1982)Google Scholar
  97. 51c.
    F. Gross, Nucl. Phys. A358:215C (1981), and references therein.ADSGoogle Scholar
  98. 52.
    P. A. M. Dirac, Rev. Mod. Phys. 21:392 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  99. 53.
    G. P. Lepage and S. J. Brodsky, Phys. Rev. D22:2157 (1980).ADSGoogle Scholar
  100. 54.
    See Ref. 16. The parameterization of the hadronic wave functions presented here is preliminary; a complete discussion and final values will be given by S. J. Brodsky, T. Huang, and G. P. Lepage, to be published.Google Scholar
  101. 55.
    S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24:181 (1970).ADSCrossRefGoogle Scholar
  102. 56.
    S. J. Brodsky and S. D. Drell, Phys. Rev. D22.–2236 (1981).ADSGoogle Scholar
  103. 57.
    See for example S. J. Brodsky and J. R. Primack, Ann. Phys. 52:315 (1969).ADSCrossRefGoogle Scholar
  104. 58.
    S. J. Brodsky and T. Huang, to be publihsed. This effect has been recently demonstrated in an explicit 3-quark nucleon model by L. S. Celenza, W. S. Pong, and C. M. Shakin, Brooklyn College report 81/101/110.Google Scholar
  105. 59.
    R. D. Field, R. Gupta, S. Otto, L. Chang, Nucl. Phys. B186:429 (1981); F. M. Dittes and A. V. Radyushkin, Dubna report JINR-E2–80–688; M. K. Chase, Ref. 18; E. Braaten (private communication.ADSCrossRefGoogle Scholar
  106. 60.
    G. R. Farrar and D. R. Jackson, Ref. 18.Google Scholar
  107. 61.
    See Ref. 10.Google Scholar
  108. 62.
    See Ref. 17.Google Scholar
  109. 63.
    A. Duncan and A. H. Mueller, Ref. 19.Google Scholar
  110. 64.
    P.V. Landshoff, Phys. Rev. D10:1024 (1974)ADSGoogle Scholar
  111. 64a.
    P. Cvitanovic, Phys. Rev. D10:338 (1974)ADSGoogle Scholar
  112. 64b.
    S. J. Brodsky and G. Farrar, Phys. Rev. Dll:1309 (1975).ADSGoogle Scholar
  113. 65.
    S. J. Brodsky and G. P. Lepage, Phys. Rev. D24:1808 (1981).ADSGoogle Scholar
  114. 66.
    S. J. Brodsky, C. R. Ji, and G. P. Lepage, Ref. 7. See also Ref. 1.Google Scholar
  115. 67.
    S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31:1153 (1975).ADSCrossRefGoogle Scholar
  116. 68.
    M. Harvey, Nucl. Phys. A352:301 (1981)ADSGoogle Scholar
  117. 68a.
    M. Harvey, Nucl. Phys. A352:326 (.1981).ADSGoogle Scholar
  118. 69.
    The result Cd = -CF/5 can also be obtained by requiring cancellation of the уii singularity. This result also follows by noting that as far as color is concerned, five quarks act coherently as an effective 3 in the soft gluon exchange limit.Google Scholar
  119. 70.
    T. Appelquist and J. R. Primack, Phys. Rev. Dl:1144 (1970).MathSciNetADSGoogle Scholar
  120. 71.
    W. P. Schütz et al., Phys. Rev. Lett. 38:259 (1977)ADSCrossRefGoogle Scholar
  121. 71a.
    F. Martin et al., Phys. Rev. Lett. 38:1320 (1977).ADSCrossRefGoogle Scholar
  122. 72.
    T. T. Chou and C. N. Yang, Phys. Rev. 170:1591 (1968)ADSCrossRefGoogle Scholar
  123. 72a.
    T. T. Chou and С. N. Yang, Phys. Rev. D19:3268 (1979).ADSGoogle Scholar
  124. 72b.
    See D. E. Soper, Phys. Rev. D15:1141 (1977) for a discussion of the impact space behavior of relativistic, large momentum transfer amplitudes.ADSGoogle Scholar
  125. 73.
    H. Nann et al., Phys. Lett. 88B:257 (1979). For a theoretical analysis based on a six-quark model, see G. A. Miller and L. S. Kisslinger, University of Washington report 40048–20–82.ADSGoogle Scholar
  126. 74.
    H. Myers et al., Phys. Rev. 121:630 (1961)ADSCrossRefGoogle Scholar
  127. 74a.
    R. Ching and С. Schaerf, Phys. Rev. 141:1320 (1966)ADSCrossRefGoogle Scholar
  128. 74b.
    P. Dougan et al., z. Phys. A276:55 (1976).ADSGoogle Scholar
  129. 75.
    This agrees with the formula for the crossed reaction γq1 ~ Mq2 listed in J. A. Bagger and J. F. Gunion, Phys. Rev. D25:2287 (1982)ADSGoogle Scholar
  130. 75a.
    See also R. Blankenbecler, S. J. Brodsky and J. F. Gunion, Phys. Rev. D18:900 (1978)ADSGoogle Scholar
  131. 75b.
    E. L. Berger, Phys. Rev. D26:105 (1982)ADSGoogle Scholar
  132. 75c.
    S. Matsuda, Kyoto University report KEK-TH 37. The origin of the amplitude zero at ue1 =-te2 is explained in S. J. Brodsky and R. W. Brown, Phys. Rev. Lett. 49:966 (1982)MathSciNetADSCrossRefGoogle Scholar
  133. and R. W. Brown, K. L. Kowalski and S. J. Brodsky, FNAL report THY-82/102.Google Scholar
  134. 76.
    H. Ikeda et al., Nucl. Phys. B172:509 (1980)ADSCrossRefGoogle Scholar
  135. 76athe presence of such resonances.
    See also P. E. Argan et al., Phys. Rev. Lett. 46:96 (1981). A more recent measurement for γd → pn by K. Baba et al., [Phys. Rev. Lett. 48:729 (1982)] is apparently not consistent withADSCrossRefGoogle Scholar
  136. 77.
    See, e.g. “New Horizons in Electromagnetic Physics,” J. V. Noble and R. R. Whitney, eds., University of Virginia, Charlottesville (1983).Google Scholar
  137. 78.
    S. J. Brodsky, T. Huang and G. P. Lepage, Ref. 16.Google Scholar
  138. 79.
    S. J. Brodsky, R. W. Brown, and K. L. Kowalski, Ref. 75.Google Scholar
  139. 80.
    S. J. Brodsky and G. P. Lepage, Nucl. Phys. A353:247c (1981).ADSGoogle Scholar
  140. 81.
    For a recent example of a boundary condition model incorporating quark constraints, see e.g. G. A. Miller and L. S. Kisslinger, Ref. 73.Google Scholar
  141. 82.
    From G. P. Lepage et al., Ref. 14.Google Scholar
  142. 83.
    J. В. Kogut and D. E. Soper, Phys. Rev. D1.–2901 (1970), andADSGoogle Scholar
  143. 83a.
    J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D3: 1382 (1971).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • S. J. Brodsky
    • 1
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations