Multi-Quark States and Potential Models

  • M. Harvey
Part of the NATO Advanced Science Institutes Series book series (NSSB, volume 104)


My task in these lectures is to discuss multihadron states in the quark model with special reference to the two-nucleon systems. We shall see during the course of these lectures that we are confronted by two main problems. The first is a suitable description of the dynamics of quarks and the second is the symmetries involved in multiquark (greater than three) states. I emphasize the two-nucleon systems (deuteron, NN-phase shifts) as a goal for multiquark studies because they are really the simplest systems for which we have experimental data.


Potential Model Negative Parity Color State Symmetry Structure Orbital Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. S. Abers and B. W. Lee, Phys. Rep. 9C:1 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    W. Marciano and H. Pagels, Phys. Rep. 36C:137 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    F. E. Close, “An Introduction to Quarks and Partons,” Academic Press, London (1979).Google Scholar
  4. 4.
    A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. F. Weisskopf, Phys. Rev. D9:3471 (1974).MathSciNetADSGoogle Scholar
  5. 5.
    T. DeGrand, R. L. Jaffe, K. Johnson and J. Kiskis, Phys. Rev. D12:2060 (1975).ADSGoogle Scholar
  6. 6.
    P. Hasenfratz and J. Kuti, Phys. Rep. 40:76 (1978).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. W. Thomas, in.: “Advances in Nuclear Physics,” J. W. Negele and E. W. Vogt, eds., Plenum Press, New York (to be published).Google Scholar
  8. 8.
    S. Théberge, A. W. Thomas and G. A. Miller, Phys. Rev. D22:2838 (1980);ADSGoogle Scholar
  9. 8a.
    S. Théberge, A. W. Thomas and G. A. Miller, Phys. Rev. D23:2106E (1981).Google Scholar
  10. 9.
    A. W. Thomas, S. Théberge and G. A. Miller, Phys. Rev. D24–216 (1981).Google Scholar
  11. 10.
    A. W. Thomas, J. Phys. G7:1283 (1981);Google Scholar
  12. 10.
    A. W. Thomas, Nucl. Phys. A354:51 (1981).ADSGoogle Scholar
  13. 11.
    G. A. Miller, S. Théberge and A. W. Thomas, Comm. Nucl. Part. Phys. 10:101 (1981).Google Scholar
  14. 12.
    G. E. Brown, M. Rho, Phys. Lett. 82B. 177 (1979).ADSGoogle Scholar
  15. 13.
    M. Rho, in.: “Progress in Particle and Nuclear Physics,” Vol. 8, D. Wilkinson, ed., Pergamon Press, Oxford (1981).Google Scholar
  16. 14.
    O. W. Greenberg, Phys. Rev. Lett. 13:598 (1964).ADSCrossRefGoogle Scholar
  17. 15.
    G. Karl and E. Obryk, Nucl. Phys. B8:609 (1969).ADSGoogle Scholar
  18. 16.
    R. R. Horgan, J. Phys. G2:625 (1976).ADSGoogle Scholar
  19. 17.
    M. Jones, R. H. Dalitz and R. R. Horgan, Nucl. Phys. B129:45 (1977).ADSCrossRefGoogle Scholar
  20. 18.
    N. Isgur and G. Karl, Phys. Rev. D18:4187 (1978);ADSGoogle Scholar
  21. 18a.
    N. Isgur and G. Karl, Phys. Rev.D19:2653 (1979).ADSGoogle Scholar
  22. 19.
    R. Koniuk and N. Isgur, Phys. Rev. D21:1868 (1980).ADSGoogle Scholar
  23. 20.
    D. P. Stanley and D. Robson, Phys. Rev. D21:3180 (1980);ADSGoogle Scholar
  24. 20a.
    D. P. Stanley and D. Robson, Phys. Rev. Lett. 45:235 (1980).ADSCrossRefGoogle Scholar
  25. 21.
    D. Robson, in: “Prog, in Particle and Nuclear Physics,” Vol. 8, D. Wilkinson, ed., Pergamon Press, Oxford (1981).Google Scholar
  26. 22.
    C. W. Wong, in.: “Prog. in Particle and Nuclear Physics,” Vol. 8, D. Wilkinson, ed., Pergamon Press, Oxford (1981).Google Scholar
  27. 23.
    Y. Nambu, in: “Preludes in Theoretical Physics,” A. DeShalit, H. Feshbach and L. Van Hove, eds., North-Holland, Amsterdam (1966).Google Scholar
  28. 24.
    A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev. D12:147 (1975).ADSGoogle Scholar
  29. 25.
    E. Eichten and K. Gottfried, Phys. Lett. 66B:286 (1977).ADSGoogle Scholar
  30. 26.
    C. Quigg and J. Rosner, Phys. Lett. 71B:153 (1977).ADSGoogle Scholar
  31. 27.
    D. Liberman, Phys. Rev. D16.1542 (1977).ADSGoogle Scholar
  32. 28.
    M. Harvey, Nucl. Phys. A352:326 (1981).ADSGoogle Scholar
  33. 29.
    Particle Data Group, Rev. Mod. Phys. 52:S1 (1980).CrossRefGoogle Scholar
  34. 30.
    For an elementary introduction to symmetries in fermion physics see M. Harvey, AECL Report No. 7166 (1980).Google Scholar
  35. 31.
    H. R. Fiebig and B. Schwesinger, “Analysis of Splitting Mechanism in the Low Lying Negative Parity Baryons,” Stony Brook Report (1982);Google Scholar
  36. 31a.
    B. Schwesinger, “Construction of One Gluon and One Pion Exchange Forces in the Chiral Bag,” Stony Brook Report (1982).Google Scholar
  37. 32.
    F. E. Close and R. R. Horgan, Nucl. Phys. B164. 413 (1980);ADSCrossRefGoogle Scholar
  38. 32a.
    F. E. Close and R. R. Horgan, Nucl. Phys.B185:323 (1981).ADSGoogle Scholar
  39. 33.
    D. P. Stanley and D. Robson, Phys. Rev. D23:2776 (1981).ADSGoogle Scholar
  40. 34.
    O. W. Greenberg and H. J. Lipkin, Nucl. Phys. A370:349 (1981).ADSGoogle Scholar
  41. 35.
    G. C Warke and R. Shanker, Phys. Rev. C21:2643 (1980).ADSGoogle Scholar
  42. 36.
    M. Oka and K. Yazaki, Prog. Theor. Phys. 66:556 (1981).ADSCrossRefGoogle Scholar
  43. 37.
    M. Harvey, Nucl. Phys. A352:301 (1981).ADSGoogle Scholar
  44. 38.
    I. T. Obukhovsky, Yu. F. Smirnov and Yu. M. Tehuvil’sky, J. Phys. A15:7 (1982).ADSGoogle Scholar
  45. 39.
    G. Racah, Phys. Rev. 61:186 (1942);ADSCrossRefGoogle Scholar
  46. 39a.
    G. Racah, Phys. Rev. 62:438 (1942);ADSCrossRefGoogle Scholar
  47. 39b.
    G. Racah, Phys. Rev. 63:367 (1943);ADSCrossRefGoogle Scholar
  48. 39c.
    G. Racah, Phys. Rev. 76:1352 (1949).ADSMATHCrossRefGoogle Scholar
  49. 40.
    H. A. Jahn and H. van Wieringen, Proc. Roy. Soc. A209:502 (1951).ADSGoogle Scholar
  50. 41.
    J. P. Elliott, J. Hope and H. A. Jahn, Phil. Trans. of Roy. Soc. London 246:241 (1953).ADSMATHCrossRefGoogle Scholar
  51. 42.
    D. E. Rutherford, “Substitutional Analysis,” Edinburgh Univ. Press, Edinburgh, (1948).MATHGoogle Scholar
  52. 43.
    M. Hamermesh, “Group Theory,” Addison-Wesley, Reading, Mass., (1964).Google Scholar
  53. 44.
    T. Yamanouchi, Proc. Phys.-Math. Soc. Japan 19:436 (1937).MATHGoogle Scholar
  54. 45.
    Y. Suzuki, K. T. Hecht and H. Toki, in: “Symposium on Group Theory,” Cocoyoc, Mexico (1982). See also M. Namiki, K. Okano and N. Oshimo, Waseda Univ. Report (1981).Google Scholar
  55. 46.
    V. G. Neudatchin, T. Obukhovsky, Yu. F. Smirnov and E. V. Tkalya, Moscow Univ. Preprint (1981).Google Scholar
  56. 47.
    R. L. Jaffe, Phys. Rev. D15:267,281 (1977).ADSGoogle Scholar
  57. 48.
    J-Q. Chen, Y-J. Shi, D. H. Feng and M. Vallieres, Drexel Univ. Report (1982).Google Scholar
  58. 49.
    K. F. Liu, Univ. Kentucky Report (1981).Google Scholar
  59. 50.
    C deTar, Phys. Rev. D16:323 (1978).Google Scholar
  60. 51.
    Y. C. Tang, Phys. Rep. 47:167 (1978), in: “Lecture Notes in Physics,” T. T. S. Kuo and S. S. M. Wong, eds., Springer-Verlag., Berlin (to be published).ADSCrossRefGoogle Scholar
  61. 52.
    M. Onsi and J. LeTourneux, Can. J. Phys. 58:612 (1980).ADSCrossRefGoogle Scholar
  62. 53.
    J. LeTourneux, Univ. of Montreal Report (1982).Google Scholar
  63. 54.
    J. A. Wheeler, Phys. Rev. 52:1083,1107 (1937).ADSCrossRefGoogle Scholar
  64. 55.
    D. L. Hill and J. A. Wheeler, Phys. Rev. 89:1102 (1953).ADSMATHCrossRefGoogle Scholar
  65. 56.
    J. J. Griffin and J. A. Wheeler, Phys. Rev. 108:311 (1957).ADSMATHCrossRefGoogle Scholar
  66. 57.
    J. P. Elliott, Proc. Roy. Soc. A245:128,562 (1958).ADSGoogle Scholar
  67. 58.
    M. Harvey, in: “Advances in Nuclear Physics,” Vol. 1, M. Baranger and E. Vogt, eds., Plenum Press, New York (1968).Google Scholar
  68. 59.
    K. Wildermuth and W. McClure, “Cluster Representations in Nuclei,” Springer-Verlag, Berlin (1966).Google Scholar
  69. 60.
    K. Wildermuth and Y. C. Tang, “A Unified Theory of the Nucleus,” Viewig, Braunschweig (1977).CrossRefGoogle Scholar
  70. 61.
    D. M. Brink, in: “Proc. Int. Conf. on Clustering Phenomenon in Nuclei,” IAEA, Vienna (1969).Google Scholar
  71. 62.
    D. R. Thompson and Y. C Tang, Phys. Rev. C12:1432 (1975);ADSGoogle Scholar
  72. 62a.
    D. R. Thompson and Y. C Tang, Phys. Rev. C13. 2597 (1976).ADSGoogle Scholar
  73. 63.
    Y. C. Tang, Fizika (Supl. 3) 9:91 (1977).Google Scholar
  74. 64.
    D. R. Thompson, in: “Clustering Aspects of Nuclear Structure and Nuclear Reactions,” W. T. H. van Oers, J. P. Svenne, J. S. C McKee and W. R. Falk, eds., Amer. Inst. Phys., New York (1978).Google Scholar
  75. 65.
    M. Harvey, in: “Int. Symp. on Clustering Phenomena in Nuclei,” P. Kramers and R. Schultheiss, eds., Werkhefte der Universität, Tübingen (1981).Google Scholar
  76. 66.
    M. Harvey, lecture at the Workshop on Quarks in Nuclei, Univ. South Carolina (1982).Google Scholar
  77. 67.
    N. B. deTakacsy, Phys. Rev. C5:1883 (1972).ADSGoogle Scholar
  78. 68.
    The Resonating Group, Phys. Lett. B43 165 (1973).Google Scholar
  79. 69.
    H. Friedrich, H. Hüsken and A. Weiguny, Nucl. Phys. A220:125 (1974).ADSGoogle Scholar
  80. 70.
    R. Beck, J. Borysowitz, D. M. Brink and M. V. Mihailović, Nucl. Phys. A224:45 (1975).ADSGoogle Scholar
  81. 71.
    A. Faessler, F. Fernandez, G. Lübeck and K. Shimizu, Univ. Tübingen Report (1981).Google Scholar
  82. 72.
    K. Erkelenz, Phys. Rep. 13C:191 (1974).ADSCrossRefGoogle Scholar
  83. 73.
    M. McGregor, R. Arndt and R. Wright, Phys. Rev. 182:1714 (1969).ADSCrossRefGoogle Scholar
  84. 74.
    K. Holinde and R. Machleidt, Nucl. Phys. A247:495 (1975);ADSGoogle Scholar
  85. A256: 479 (1976).Google Scholar
  86. 75.
    K. Holinde, Phys. Rep. 68:121 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. Harvey
    • 1
  1. 1.Chalk River Nuclear LaboratoriesAtomic Energy of Canada Ltd.Chalk RiverCanada

Personalised recommendations