Substituted Polyamides as Precursors for Alkyl and Alkenyl Polybenzoxazoles

  • Lon J. Mathias
  • Sharf U. Ahmed
  • Peter D. Livant
Part of the Polymer Science and Technology book series (POLS, volume 25)


Polymers with heteroaromatic repeat units have been known for many years to exhibit good thermal and oxidative stability. Polybenzimidazoles (1), polybenzothiazoles (2), and polybenzoxazoles (3,4) were first reported in the late ‘50’s and early ‘60’s and have since been under widespread investigation. Both AA-BB and AB monomer systems have been employed in the synthesis of high molecular weight polymers. (5) The thermal stability in nitrogen atmosphere of the completely aromatic AB polymers prepared from the various 3,4-disubstituted benzoic acids decreased in the order benzimidazoles>benzothiazole>benzoxazole. In air, however, all three types of polymers possessed similar stability.


Nitro Compound Polyphosphoric Acid High Molecular Weight Polymer Thermal Polymerization Sodium Dithionate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Vogel and C.S. Marvel, J. Polym. Sci., 50, 511 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    P.M. Hergenrother, W. Wrasidlo and H.H. Levine, J. Polym. Sci., A3, 1665 (1965)Google Scholar
  3. 3.
    K.C. Brinker and I.M. Robinson, U.S. Pat. 2,895, 948 (1958).Google Scholar
  4. 4.
    W.W. Moyer, C. Cole and T. Anyos, J. Polym. Sci., A3, 2107 (1965).Google Scholar
  5. 5.
    C. Arnold, Jr., J. Polym. Sci. Macromol. Rev., 14, 265 (1979)CrossRefGoogle Scholar
  6. 6.
    Y. Imai, K. Uno and Y. Iwakura, Macromol. Chem., 83, 179 (1965).CrossRefGoogle Scholar
  7. 7.
    Brit. pat. 811,758 (1959); Chem. Abstr., 53, 14582C (1959).Google Scholar
  8. 8.
    G. Wu, H. Tanaka, K. Sanui, and N. Ogata, Polym. J., 14, 571 and 797 (1982).Google Scholar
  9. 9.
    L. Jannelli and P.G. Orsini, Gazz. Chim, Ital., 88 331 (1958); Chem. Abst. 53, 16623b (1959).Google Scholar
  10. 10.
    J.B. Wright, J. Heterocycl. Chem. 9, 681 (1972) and references therin.Google Scholar
  11. 11.
    N. Yamazaki, F. Higashi and J. Kawabata, J. Polym. Sci. Polym. Chem. Ed., 12, 2149 (1974).Google Scholar
  12. 12.
    N. Yamazaki, T. Iguchi and F. Higashi, Ibid., 13, 785 (1975).Google Scholar
  13. 13.
    N. Ogata and H. Tanaka, Polym. J., 7, 412 (1975).CrossRefGoogle Scholar
  14. 14.
    W. Freund, J. Chem. Soc. 3072 (1952).Google Scholar
  15. 15.
    S.N. Chakravarti, K. Granapati and S. Aravamudhachari, J. Ind. Chem. Soc., 171 (1938).Google Scholar
  16. 16.
    T.B. Johnson and E.F. Kohmann, J. Amer. Chem. Soc., 37, 162 (1915).CrossRefGoogle Scholar
  17. 17.
    Brit. Patent. No. 811, 758; Chem. Abst., 53, 14582 (1959).Google Scholar
  18. 18.
    J.R. Dimmock, J. Sci. Fd. Agric, 18, 368 (1967).CrossRefGoogle Scholar
  19. 19.
    T. Kametani, et. al., Takugaku Zasshi, 84, 432 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lon J. Mathias
    • 1
  • Sharf U. Ahmed
    • 2
  • Peter D. Livant
    • 2
  1. 1.Dept. of Polymer ScienceUniv. of Southern MississippiHattiesburgUSA
  2. 2.Dept. of ChemistryAuburn UniversityAuburnUSA

Personalised recommendations