Advertisement

Polymerization of Butadiyne: Polymer Characterization and Properties

  • Arthur W. Snow
Part of the Polymer Science and Technology book series (POLS, volume 25)

Abstract

Butadiyne, H-C≡C-C≡C-H, as a polymerizable monomer, has received very little attention from polymer chemists although its discovery dates back to Bayer1 in 1885. This structurally simple, highly reactive bifunctional molecule would be expected to have been a monomer of considerable interest in the field of polymer chemistry. Possibly, limited butadiyne stability may account for the small amount of polymerization research. The The compound is a liquified gas at room temperature (BP = 10°C), discolors slowly in sealed vessels at 20°C and may explode if heated. Storage and instability problems may be circumvented. Prevention of explosion may be accomplished by addition of an inert diluent such as butane2. The monomer may also be stored in the form of a labile complex with N-methyl-pyrrolidone3. Its thermal condensation or polymerization was briefly recorded as an observation by Bayer and described in a little more detail by Müller4 in 1925. Prevention of this thermal polymerization has been the subject of several patents5 with methylene blue, pyridine and vinylpyridine claimed as inhibitors.

Keywords

Triple Bond Bulk Polymer Vinylidene Fluoride Thermal Polymerization Interdigital Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bayer, Ber., 18 2269 (1885).Google Scholar
  2. 2.
    F. Zobel and W. Hunsman, Ger. Patent 860,212 (1952), CA50:4510a.Google Scholar
  3. 3.
    N. Shachat, J. Org. Chem., 27 2928 (1962).CrossRefGoogle Scholar
  4. 4.
    F. G. Muller, Heiv. Chim. Acta., 8 826 (1925).CrossRefGoogle Scholar
  5. 5.
    H. H. Nelson, U. S. Patents 2715101 (1955), 2861041 (1959);Google Scholar
  6. D. W. McDonald, U. S. Patent 2965565 (1960).Google Scholar
  7. 6.
    N. L. Desai, The Polymerization of Diacetylene, Ph.D. thesis, Pennsylvania State University, PA. (1965).Google Scholar
  8. 7.
    I. A. Chekulaeva, V. A. Ponomarenko, I. B. Bystrova and G. V. Talypina, Vysokomol. Soedin., Ser 652 (1967) Vysokomol. Soedin., Ser. Al2, 1180 (1970):Google Scholar
  9. 8.
    I. A. Chekulaeva, and V. A. Ponomarenko, Vysokomol. Soedin., Ser. B16 126 (1974).Google Scholar
  10. 9.
    G. Wegner, Makromol. Chem., 154 35 (1972).CrossRefGoogle Scholar
  11. 10.
    P. J. Russo and M. M. Labes, Chem. Comm., 53 (1982).Google Scholar
  12. 11.
    J. B. Armitage and E. R. Jones, J. Chem. Soc., 44 (1951).Google Scholar
  13. 12.
    A. V. Jones, Proc. Roy. Soc. (London), A211 285 (1952).ADSCrossRefGoogle Scholar
  14. 13.
    K. K. Georgieff and Y. Richard, Can. J. Chem., 36 1280 (1958)Google Scholar
  15. 14.
    R. Tedeschi and A. Brown, J. Org. Chem., 29 2051 (1951).CrossRefGoogle Scholar
  16. 15.
    F. Bischoff and H. Adkins, J. Amer. Chem. Soc., 46 256 (19241Google Scholar
  17. 16.
    T. Ito, H. Shirakawa and S. Ikeda, J. Polym. Sci., Polymer Chem., 12 11 (1974).ADSCrossRefGoogle Scholar
  18. 17.
    D. H. Dawes, and C. A. Winkler, J. Poly. Sci., A2 3029 (1964)Google Scholar
  19. 18.
    M. G. Chauser, I. D. Kalikhman, M. I. Cherkashin and A. A. Berlin, Izv. Akad. Nauk. SSSR, Ser. Shim., 2421 (1969)Google Scholar
  20. b) A. A. Berlin, M. I. Cherkashin, M. G. Chauser and R. R. Shifrina, Vysokomol. Soed., A9 2219 (1967)Google Scholar
  21. (c).
    M. G. Chauser, M. I. Cherkashin, M. Ya. Kushnerev, T. I. Protsuk and A. A. Berlin, Vysokomol. Soed., A10 916 (1968)Google Scholar
  22. (d).
    M. G. Chauser, I. D. Kalikhman, M. I. Cherkashin and A. A. Berlin, Vysokomol. Soed., Al2 1022 (1970).Google Scholar
  23. 19.
    A. W. Snow, Nature, 292 40 (1981).ADSCrossRefGoogle Scholar
  24. 20.
    R. A. Nyquist, and W. J. Potts, Spechrochim. Acta., 16 419 (1960).ADSCrossRefGoogle Scholar
  25. 21.
    GH. D. Mateescu, ‘Infrared Spectroscopy“, Wiley-Interscience, New York (1972) Part II, Chapter 1.Google Scholar
  26. 22.
    W. D. Celmer, and I. A. Solomons, J. Amer. Chem. Soc., 75 1372 (1953).CrossRefGoogle Scholar
  27. 23.
    A. W. Snow, Carbon 19 467 (1981).CrossRefGoogle Scholar
  28. 24.
    Apparatus designed by Dr. H. Wohltjen.Google Scholar
  29. 25.
    AsF5 is one of the strongest doping agents for inducing high electrical conductivity in conjugated polymers. R. H. Baughman, J. L. Bredas, R. R. Chance, R. L. Elsenbaumer and L. W. Shaklette, Chem. Rev. 82 209 (1982).Google Scholar
  30. 26.
    J. L. Bredas, R. R. Chance and R. H. Baughman, J. Chem. Phys., 76 3673 (1982).ADSCrossRefGoogle Scholar
  31. 27.
    A. W. Snow and J. R. Griffith, IMPAC Macromolecular Symposium, Amherst, MA, 1982. Preprint,p. 432.Google Scholar
  32. 28.
    a) Y. Okamoto, A. Gordon, F. Movsovicius, H. Hellman and W. Brenner, Chem. and Ind., 2004 (1961)Google Scholar
  33. (b).
    J. H. Lai, Macromolecules 10 1253 (1977).ADSCrossRefGoogle Scholar
  34. 29.
    V. N. Salaurov, Yu. G. Kryazhev, T. I. Vakul’skaya, and M. G. Voronkov, Makromol. Chem., 175 757 (1974).CrossRefGoogle Scholar
  35. 30.
    C. C. Price and T. F. McKeon, J. Poly. Sci., 41 445 (1959).ADSCrossRefGoogle Scholar
  36. 31.
    I. Kaneko, and N. Hagihara, J. Poly. Sci., Polymer Lett., 9 275 (1971).ADSGoogle Scholar
  37. 32.
    W. Bracke, J. Poly. Sci., A-1, 10 2097 (1972).CrossRefGoogle Scholar
  38. 33.
    H. W. Gibson and J. M. Pochan, Macromolecules, 15 249 (1982)ADSCrossRefGoogle Scholar
  39. Osterholm, J. E., Levenson, C. L. and Yasuda, H. K., J. Applied Poly. Sci., 27 931 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Arthur W. Snow
    • 1
  1. 1.Naval Research LaboratoryPolymeric Materials BranchUSA

Personalised recommendations