Advertisement

New Functional Methacrylate Polymers by Anionic Polymerization

  • G. D. Andrews
  • L. R. Melby
Part of the Polymer Science and Technology book series (POLS, volume 25)

Abstract

In the early 1960’s, subsequent to the pioneering work of M. Szwarc on the living anionic polymerization of styrene and butadiene, extensive research on the anionic polymerization of methacrylate esters was undertaken by D. L. Glusker, W. E. Goode, R. K. Graham and co-workers of the Rohm and Haas Company laboratories. Their work was augmented by that of D. M. Wiles and S. Bywater of the National Research Council of Canada during the same era, and related studies subsequently issued from many laboratories. (For leading references see Ref. 1.)

Keywords

High Performance Liquid Chromatography Block Copolymer Molecular Weight Distribution High Performance Liquid Chromatography Analysis Glycidyl Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Wiles in “Structure And Mechanism In Vinyl Polymerizations”, Eds., T. Tsuruta and K. F. O’Driscoll, Marcel Dekker, Inc., New York, 1960, p. 223.Google Scholar
  2. 2.
    W. E. Goode, F. H. Owens, and W. L. Myers, J. Polym. Sci., 47, 75 (1960).ADSCrossRefGoogle Scholar
  3. 3.
    D. Braun, M. Herner, U. Johnson, and W. Kern, Makromol. Chemie, 51, 15 (1962).CrossRefGoogle Scholar
  4. 4.
    W. Fowells, C. Schuerch, F. A. Bovey, and F. P. Hood, J. Amer. Chem. Soc., 89, 1396 (1967).CrossRefGoogle Scholar
  5. 5.
    A. H. E. Müller, H. Höcker, and G. V. Schulz, Macromolecules, 10, 1086 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    Principles of Polymer Chemistry”, P. J. Flory, Cornell University Press, 1953, p. 337.Google Scholar
  7. 7.
    a) B. C. Anderson, G. D. Andrews, P. Arthur,Jr., H. W. Jacobson, L. R. Melby, A. J. Playtis, and W. H. Sharkey, Macromolecules, 14, 1599 (1981).Google Scholar
  8. (b).
    G. D. Andrews, U. S. Patent 4,351,924, Sept. 28, 1982.Google Scholar
  9. 8.
    G. D. Andrews, IUPAC Meeting, Amherst, 1982.Google Scholar
  10. 9.
    B. C. Anderson, Polymer Synthesis - The 1980’s, Polytechnic Institute of New York symposium, March 11, 1983.Google Scholar
  11. 10.
    R. A. Galluccio and D. L. Glusker, Macromolecular Syntheses, 7, (1979).Google Scholar
  12. 11.
    We further showed that in toluene/pyridine with n-BuLi, the initiator is in fact not the alkyllithium, but a pyridine alkyl-lithium adduct; L. R. Melby, P. Arthur, Jr., and W. H. Sharkey, work to be published.Google Scholar
  13. 12.
    C. E. Schildknecht, “Vinyl and Related Polymers”, John Wiley and Sons, New York, 1952, p. 245.Google Scholar
  14. 13.
    G. D. Andrews and A. Vatvars, Macromolecules, 14, 1603 (1981).ADSCrossRefGoogle Scholar
  15. 14.
    A. Roig, J. E. Figueruelo, and E. Llana, J. Polm. Sci., B3, 171 (1965).Google Scholar
  16. 15.
    a) D. M. Wiles and S. Bywater J. Polym. Sci., B2, 1175 (1964).CrossRefGoogle Scholar
  17. (b).
    D. M. Wiles and S. Bywater idem, Trans. Faraday Soc., 61, 150 (1965)CrossRefGoogle Scholar
  18. 16.
    P. E. Eaton, G. F. Cooper, R. C. Johnson, and R. H. Mueller, J. Org. Chem., 37, 1947 (1972).CrossRefGoogle Scholar
  19. 17.
    D. N. Schulz, A. F. Halasa, and A. E. Oberster, J. Pol. Sci., Pol. Chem. Ed., 12, 153 (1974).CrossRefGoogle Scholar
  20. 18.
    a) H. Inagaki, Adv. Polym. Sci., 24, 207 (1977).Google Scholar
  21. (b).
    T. Min and H. Inagaki, Polymer, 21, 309(1980)CrossRefGoogle Scholar
  22. (c).
    P. Mansson, J. Pol., Sci., Polym. Chem. Ed., 18, 1945 (1980).CrossRefGoogle Scholar
  23. 19.
    L. R. Melby and H. W. Jacobson, work to be published.Google Scholar
  24. 20.
    R. K. Graham, D. L. Dunkelberger, and E. S. Cohn, J. Polym. Sci., 42, 501 (1960).ADSCrossRefGoogle Scholar
  25. 21.
    R. K. Graham, J. R. Panchak, and M. J. Kampf, ibid., 44, 411 (1960).ADSGoogle Scholar
  26. 22.
    H. Ailhaud, Y. Gallot, and A. Skoulios, Makromol. Chemie, 140 179 (1970).CrossRefGoogle Scholar
  27. 23.
    P. K. Seow, J.-P. Lingelser, and Y. Gallot, ibid., 178, 107 (1977).Google Scholar
  28. 24.
    H. Yuki, K. Ohta, K. Hatada, and H. Ishikawa, Polymer Journal, 11, 323 (1979).CrossRefGoogle Scholar
  29. 25.
    An elongated, creased resin kettle and Chemapec Vibro Mixer were used.Google Scholar
  30. 26.
    The subscripts which follow refer to the approximate DP corresponding to the amount of monomer actually added. GPC peak molecular weight measurements were in good agreement.Google Scholar
  31. 27.
    T. Kitano, T. Fujimoto, and M. Nagasawa, Polymer Journal, 9, No. 2, 153 (1977).Google Scholar
  32. 28.
    The addition rate was the same as for an analogous PMMA run in which the temperature was maintained at −70°C.Google Scholar
  33. 29.
    The polymer is soluble in hexane.Google Scholar
  34. 30.
    a) D. M. Wiles and S. Brownstein, Pol mer Letters, 3, 951 (9165).Google Scholar
  35. (b).
    G. F. D’Alelio and T. R. Hofe~ nd, J. PPo, Sci., pt. Al, 5, 323 (1967).Google Scholar
  36. 31.
    G. D. Andrews, U. S. Patent 4,293,674, Oct. 6, 1981.Google Scholar
  37. 32.
    Block Copolymers”, A. Noshay and J. E. McGrath, Academic press, New York, 1977, p. 31.Google Scholar
  38. 33.
    I. A. Arbusova, V. N. Yefremova, A. G. Eliseyeva, and M. F. Zinder, Vyskomel. soyed., 5, No. 12, 1819 (1963).Google Scholar
  39. 34.
    Y Iwakura, F. Toda, T. Ito, and K. Aoshima, J. Polym. Sci., B5, 29, (1967).CrossRefGoogle Scholar
  40. 35.
    T. Ito, K. Aoshima, F. Toda, K. Uno, and Y. Iwakura, Polymer Journal, 1, No. 3, 278 (1970).Google Scholar
  41. 36.
    In this example the GPC value for Mn was 1600. At these low DPs GPC values are consistently lower than those from NMR analysis. The discrepency relates to vagaries in GPC calibration and standards for low molecular weight materials.Google Scholar
  42. 37.
    The NMR spectrum shows a characteristic epoxide proton multiplet at 2.5–3.3 ppm., and glycidyl ester proton resonances at 3.55 ppm, 4.25 ppm, and 4.48 ppm.Google Scholar
  43. 38.
    J. J. Eisch and A. M. Jacobs, J. Org. Chem., 28, 2145 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • G. D. Andrews
    • 1
  • L. R. Melby
    • 1
  1. 1.Central Research and Development DepartmentE.I. Dupont de Nemours and CompanyWilmingtonUSA

Personalised recommendations