Skip to main content

New Functional Methacrylate Polymers by Anionic Polymerization

  • Chapter
New Monomers and Polymers

Part of the book series: Polymer Science and Technology ((POLS,volume 25))

Abstract

In the early 1960’s, subsequent to the pioneering work of M. Szwarc on the living anionic polymerization of styrene and butadiene, extensive research on the anionic polymerization of methacrylate esters was undertaken by D. L. Glusker, W. E. Goode, R. K. Graham and co-workers of the Rohm and Haas Company laboratories. Their work was augmented by that of D. M. Wiles and S. Bywater of the National Research Council of Canada during the same era, and related studies subsequently issued from many laboratories. (For leading references see Ref. 1.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Wiles in “Structure And Mechanism In Vinyl Polymerizations”, Eds., T. Tsuruta and K. F. O’Driscoll, Marcel Dekker, Inc., New York, 1960, p. 223.

    Google Scholar 

  2. W. E. Goode, F. H. Owens, and W. L. Myers, J. Polym. Sci., 47, 75 (1960).

    Article  ADS  Google Scholar 

  3. D. Braun, M. Herner, U. Johnson, and W. Kern, Makromol. Chemie, 51, 15 (1962).

    Article  Google Scholar 

  4. W. Fowells, C. Schuerch, F. A. Bovey, and F. P. Hood, J. Amer. Chem. Soc., 89, 1396 (1967).

    Article  Google Scholar 

  5. A. H. E. Müller, H. Höcker, and G. V. Schulz, Macromolecules, 10, 1086 (1977).

    Article  ADS  Google Scholar 

  6. Principles of Polymer Chemistry”, P. J. Flory, Cornell University Press, 1953, p. 337.

    Google Scholar 

  7. a) B. C. Anderson, G. D. Andrews, P. Arthur,Jr., H. W. Jacobson, L. R. Melby, A. J. Playtis, and W. H. Sharkey, Macromolecules, 14, 1599 (1981).

    Google Scholar 

  8. G. D. Andrews, U. S. Patent 4,351,924, Sept. 28, 1982.

    Google Scholar 

  9. G. D. Andrews, IUPAC Meeting, Amherst, 1982.

    Google Scholar 

  10. B. C. Anderson, Polymer Synthesis - The 1980’s, Polytechnic Institute of New York symposium, March 11, 1983.

    Google Scholar 

  11. R. A. Galluccio and D. L. Glusker, Macromolecular Syntheses, 7, (1979).

    Google Scholar 

  12. We further showed that in toluene/pyridine with n-BuLi, the initiator is in fact not the alkyllithium, but a pyridine alkyl-lithium adduct; L. R. Melby, P. Arthur, Jr., and W. H. Sharkey, work to be published.

    Google Scholar 

  13. C. E. Schildknecht, “Vinyl and Related Polymers”, John Wiley and Sons, New York, 1952, p. 245.

    Google Scholar 

  14. G. D. Andrews and A. Vatvars, Macromolecules, 14, 1603 (1981).

    Article  ADS  Google Scholar 

  15. A. Roig, J. E. Figueruelo, and E. Llana, J. Polm. Sci., B3, 171 (1965).

    Google Scholar 

  16. a) D. M. Wiles and S. Bywater J. Polym. Sci., B2, 1175 (1964).

    Article  Google Scholar 

  17. D. M. Wiles and S. Bywater idem, Trans. Faraday Soc., 61, 150 (1965)

    Article  Google Scholar 

  18. P. E. Eaton, G. F. Cooper, R. C. Johnson, and R. H. Mueller, J. Org. Chem., 37, 1947 (1972).

    Article  Google Scholar 

  19. D. N. Schulz, A. F. Halasa, and A. E. Oberster, J. Pol. Sci., Pol. Chem. Ed., 12, 153 (1974).

    Article  Google Scholar 

  20. a) H. Inagaki, Adv. Polym. Sci., 24, 207 (1977).

    Google Scholar 

  21. T. Min and H. Inagaki, Polymer, 21, 309(1980)

    Article  Google Scholar 

  22. P. Mansson, J. Pol., Sci., Polym. Chem. Ed., 18, 1945 (1980).

    Article  Google Scholar 

  23. L. R. Melby and H. W. Jacobson, work to be published.

    Google Scholar 

  24. R. K. Graham, D. L. Dunkelberger, and E. S. Cohn, J. Polym. Sci., 42, 501 (1960).

    Article  ADS  Google Scholar 

  25. R. K. Graham, J. R. Panchak, and M. J. Kampf, ibid., 44, 411 (1960).

    ADS  Google Scholar 

  26. H. Ailhaud, Y. Gallot, and A. Skoulios, Makromol. Chemie, 140 179 (1970).

    Article  Google Scholar 

  27. P. K. Seow, J.-P. Lingelser, and Y. Gallot, ibid., 178, 107 (1977).

    Google Scholar 

  28. H. Yuki, K. Ohta, K. Hatada, and H. Ishikawa, Polymer Journal, 11, 323 (1979).

    Article  Google Scholar 

  29. An elongated, creased resin kettle and Chemapec Vibro Mixer were used.

    Google Scholar 

  30. The subscripts which follow refer to the approximate DP corresponding to the amount of monomer actually added. GPC peak molecular weight measurements were in good agreement.

    Google Scholar 

  31. T. Kitano, T. Fujimoto, and M. Nagasawa, Polymer Journal, 9, No. 2, 153 (1977).

    Google Scholar 

  32. The addition rate was the same as for an analogous PMMA run in which the temperature was maintained at −70°C.

    Google Scholar 

  33. The polymer is soluble in hexane.

    Google Scholar 

  34. a) D. M. Wiles and S. Brownstein, Pol mer Letters, 3, 951 (9165).

    Google Scholar 

  35. G. F. D’Alelio and T. R. Hofe~ nd, J. PPo, Sci., pt. Al, 5, 323 (1967).

    Google Scholar 

  36. G. D. Andrews, U. S. Patent 4,293,674, Oct. 6, 1981.

    Google Scholar 

  37. Block Copolymers”, A. Noshay and J. E. McGrath, Academic press, New York, 1977, p. 31.

    Google Scholar 

  38. I. A. Arbusova, V. N. Yefremova, A. G. Eliseyeva, and M. F. Zinder, Vyskomel. soyed., 5, No. 12, 1819 (1963).

    Google Scholar 

  39. Y Iwakura, F. Toda, T. Ito, and K. Aoshima, J. Polym. Sci., B5, 29, (1967).

    Article  Google Scholar 

  40. T. Ito, K. Aoshima, F. Toda, K. Uno, and Y. Iwakura, Polymer Journal, 1, No. 3, 278 (1970).

    Google Scholar 

  41. In this example the GPC value for Mn was 1600. At these low DPs GPC values are consistently lower than those from NMR analysis. The discrepency relates to vagaries in GPC calibration and standards for low molecular weight materials.

    Google Scholar 

  42. The NMR spectrum shows a characteristic epoxide proton multiplet at 2.5–3.3 ppm., and glycidyl ester proton resonances at 3.55 ppm, 4.25 ppm, and 4.48 ppm.

    Google Scholar 

  43. J. J. Eisch and A. M. Jacobs, J. Org. Chem., 28, 2145 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Andrews, G.D., Melby, L.R. (1984). New Functional Methacrylate Polymers by Anionic Polymerization. In: Culbertson, B.M., Pittman, C.U. (eds) New Monomers and Polymers. Polymer Science and Technology, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4619-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4619-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4621-0

  • Online ISBN: 978-1-4684-4619-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics