Advertisement

Synthesis and NMR Characterization of Copolymers of α-Fluorostyrene with Methyl Acrylate

  • Ramendra N. Majumdar
  • H. James Harwood
Part of the Polymer Science and Technology book series (POLS, volume 25)

Abstract

Polymers of α-halostyrenes are unstable because they contain labile halogen atoms which are readily lost as hydrogen halide1. Although a few studies on the synthesis and applications of homopolymers and copolymers of α-chlorostyrene2–10, α-bromostyrene11,12 and α-fluorostyrene 13–16 have been reported, no systematic studies on the copolymerization behavior of these monomers or on the microstructures of their polymers are known. Most of these studies have dealt with homopolymerization of α-halostyrenes in emulsion or in suspension or with copolymerizations (mostly graft) involving very small molar percentages of α-halostyrene.

Keywords

Methyl Acrylate Carbon Resonance Acrylate Copolymer Resonance Area Methine Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.F. Raley and R.J. Dolinski, Reactive halogenated monomers in: “Functional Monomers”, R.H. Yocum and E.B. Nyquist, Eds., Marcel Dekker, Inc., New York (1973).Google Scholar
  2. 2.
    W.C. Mast and C.H. Fisher, Vulcanization of chlorine containing acrylic elastomers, Ind. Eng. Chem., 40: 107 (1948).Google Scholar
  3. 3.
    T.-J. Suen and A.M. Schiller, Sulfonated (hydroxymethyl) acrylamide polymers and copolymers, Brit. Patent 738,047 (Oct. 5, 1955); Chem. Abstr. 50: 8252 (1956); U. S. Patent 2,761,856 (Sept. 4, 1956); Chem. Abstr. 50: 15130 (1956).Google Scholar
  4. 4.
    J.P. Regeaud, α-Chlorostyrene and α-cyanostyrene and their phenomena, Chim. Mod. 4: 91 (1959);Google Scholar
  5. J.P. Regeaud, α-Chlorostyrene and α-cyanostyrene and their phenomena, Chem. Abstr. 53: 18902 (1959).Google Scholar
  6. 5.
    W.J. Blank and G.J. Pietsch, Priming electrodeposited acrylic resin coatings to increase their adhesion to epoxy coatings, U. S. Patent 3,619,399 (Nov. 9, 1971); Chem. Abstr. 76: 73863 (1972).Google Scholar
  7. 6.
    M.M. Mednikov, V.I. Budkín, V.N. Semenov, V.A. Krol, and N.F. Khakhalina, Low-molecular-weight styrene copolymers, U.S.S.R. Patent 382,107 (Feb. 2, 1972 );Google Scholar
  8. M.M. Mednikov, V.I. Budkín, V.N. Semenov, V.A. Krol, and N.F. Khakhalina, Chem. Abstr. 77: 20645 (1972).Google Scholar
  9. 7.
    M.M. Mednikov, V.A. Krol, V.I. Budkin, V.N. Semenov, and N.F. Khakhalina, Low-molecular-weight styrene copolymers, U.S.S.R. Patent 328,105 (Feb. 2, 1972); Chem. Abstr. 77: 20647 (1972).Google Scholar
  10. 8.
    C.L. Meredith and G.A. Von Bodungen, High-impact-strength EPDM graft copolymers, U.S. Patent 3,657,395 (April 18, 1972); Chem. Abstr. 77: 35551 (1972).Google Scholar
  11. 9.
    C.L. Meredith and G.A. Von Bodungen, EPDM rubber-modified plastic compositions, U.S. Patent 3,671,608 (June 20, 1972 );Google Scholar
  12. C.L. Meredith and G.A. Von Bodungen, Chem. Abstr. 77: 89474 (1972).Google Scholar
  13. 10.
    E. Agouri, R. Laputte, and J. Rideau, Low-density polyethylene masses for manufacturing films, Ger. Offen. 2,731,040 (Jan. 19, 1978 );Google Scholar
  14. E. Agouri, R. Laputte, and J. Rideau, Chem. Abstr. 88: 153510 (1978).Google Scholar
  15. 11.
    T. Goto, E. Sakaoka, T. Hiraoka, and S. Rokuwatari, Transparent, impact-resistant rubbers, Japan Patent 7031,677 (Oct. 13, 1970 );Google Scholar
  16. T. Goto, E. Sakaoka, T. Hiraoka, and S. Rokuwatari, Chem. Abstr. 74: 14020 (1971).Google Scholar
  17. 12.
    A.D. Pomogailo, A.P. Lisitskaya, A.I. Kuzaev, and F.S. D’yachkovskii, Polymerization of ethylene in the presence of macromolecular carbonium salts of complex catalyst components, Kompleks. Metalloorgan. Katalizatory Polimeriz. Olefinov. Chernogolovka 1980: 66;Google Scholar
  18. A.D. Pomogailo, A.P. Lisitskaya, A.I. Kuzaev, and F.S. D’yachkovskii, Chem. Abstr. 85: 43768 (1981).Google Scholar
  19. 13.
    K. Matsuda, J.A. Sedlak, J.S. Noland, and G.C. Gleckler, a-Fluorostyrene: preparation, properties, and polymerization, J. Org. Chem., 27: 4015 (1962).CrossRefGoogle Scholar
  20. 14.
    J.S. Noland, Homopolymers of a-fluorostyrene, U.S. Patent 3,207,733 (Sept. 21, 1965 );Google Scholar
  21. J.S. Noland, Chem. Abstr. 63: 18292 (1965).Google Scholar
  22. 15.
    T. Sata, S. Murakami, and Y. Murata, Diaphragm for electrolysis cell, Ger. Offen. 2,504,622 (Aug. 7, 1975); Chem. Abstr. 83: 199502 (1975).Google Scholar
  23. 16.
    Tokuyama Soda Co., Ltd., Cation-exchanging membrane for brine electrolysis, Jpn. Kokai Tokkyo Koho 81 38,490 (Apr. 13, 1981); Chem. Abstr. 95: 123027 (1981).Google Scholar
  24. 17.
    R.N. Majumdar, M.K. Niknam, H.A. Nguyen, and H.J. Harwood, Stabilization and NMR spectra of poly(a-fluorostyrene), Makromol. Chem., Rapid Commun. 3: 421 (1982).CrossRefGoogle Scholar
  25. 18.
    L. Eckes and M. Hanack, Herstellung von Vinylfluoriden, Synthesis 1978: 217.Google Scholar
  26. 19.
    A.A. Bothner-By and S.M. Castellano, LAOCN3, in: “Computer programs for chemistry”, Vol. 1, D.F. DeTar, Ed.; W.A. Benjamin, Inc., New York (1968).Google Scholar
  27. 20.
    G. Filipovich and G.V.D. Tiers, Fluorine N.S.R. spectroscopy. I. Reliable shielding values, 0, by use of CC13F as solvent and internal reference, J. Phys. Chem. 63: 761 (1959).CrossRefGoogle Scholar
  28. 21.
    H.J. Harwood, A FORTRAN II program for conducting sequence distribution calculations, J. Polym. Sci., Part C, No. 25: 37 (1968).Google Scholar
  29. 22.
    R.M. Joshi, A brief survey of methods of calculating monomer reactivity ratios, J. Macromol. Sci., Chem. 7: 1231 (1973)CrossRefGoogle Scholar
  30. 23.
    T. Kelen and F. Tüdös, Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method, J. Macromol. Sci., Chem. 9: 1. (1975).Google Scholar
  31. 24.
    S.S. Rao, S. Ponratnam, S.L. Kapur, and P.K. Iyer, Kelen-Tüdös method applied to the analysis of high conversion copolymerization data, J. Polym. Sci., Polym. Lett. Ed. 14: 513 (1976).Google Scholar
  32. 25.
    P.W. Tidwell and G.A. Mortimer, An improved method of calculating copolymerization reactivity ratios, J. Polym. Sci., Part A, 3: 369 (1965).Google Scholar
  33. 26.
    R.Z. Greenley, An expanded listing of revised Q and e values, J. Macromol. Sci., Chem. 14: 427 (1980).CrossRefGoogle Scholar
  34. 27.
    K. Ito, S. Iwase, K. Umehara, and Y. Yamashita, Copolymer microstructure by high resolution NMR studies, J. Macromol. Sci., Chem. 1: 891 (1967).CrossRefGoogle Scholar
  35. 28.
    H.J. Harwood and W.M. Ritchey, Methoxy and a-methyl proton resonance in styrene-methyl methacrylate copolymers, J. Polym. Sci., Part B, 3: 419 (1965).CrossRefGoogle Scholar
  36. 29.
    T. Suzuki, E.R. Santee, Jr., H.J.Harwood, O. Vogl, and T. Tanaka, Measurement of tetrad configurations in poly-(methyl acrylate) by 300 MHz PMR spectroscopy, J, Polym., Sci., Polym. Lett. Ed., 12: 635 (1974).Google Scholar
  37. 30.
    L. Shepherd, T.K. Chen, and H.J. Harwood, Epimerization of isotactic polystyrene, Polym. Bull. 1: 445 (1979).CrossRefGoogle Scholar
  38. 31.
    D.L. Trumbo, T.K. Chen, and H.J. Harwood, Observation of triad stereosequence in a polystyrene derivative, Macromolecules 14: 1138 (1981).ADSCrossRefGoogle Scholar
  39. 32.
    T. Kawamura, T. Uryu, and K. Matsuzaki, Reinvestigation of the stereoregularity of polystyrene by 100 MHz ‘3C-NMR spectroscopy, Makromol. Chem., Rapid Commun. 3: 661 (1982).CrossRefGoogle Scholar
  40. 33.
    M.K. Niknam and H.J. Harwood, Unpublished results.Google Scholar
  41. 34.
    J.C. Randall, “Polymer Sequence Determination. Carbon-13 NMR Method”, Academic Press, New York (1977).Google Scholar
  42. 35.
    T.K. Chen, T.A. Gerken, and H.J. Harwood, Methylene carbon resonance spectra of epimerized isotactic polystyrene, Polym. Bull., 2: 37 (1980).CrossRefGoogle Scholar
  43. 36.
    N.L. Zutty and F.J. Welch, Synthesis of vinyl polymers containing a-substituted y-butyrolactone groups in their backbone, J. Polym. Sci., Part A 1: 2289 (1963).Google Scholar
  44. 37.
    N.W. Johnston and H.J. Harwood, Intersequence cyclization reaction in methyl methacrylate - vinyl halide copolymers and terpolymers, J. Polym. Sci., Part C, No. 22: 591 (1969).Google Scholar
  45. 38.
    N.W. Johnston and H.J. Harwood, Intersequence cyclization in brominated methyl methacrylate - butadiene copolymers, Macromolecules 3: 20 (1970).ADSCrossRefGoogle Scholar
  46. 39.
    N.W. Johnston and H.J. Harwood, Intersequence cyclization in methyl methacrylate - vinyl chloride-styrene terpolymers, Macromolecules 2: 221 (1969).ADSCrossRefGoogle Scholar
  47. 40.
    F. Shepherd and H.J. Harwood, Equimolar alternating vinyl chloride-methyl methacrylate copolymers: synthesis and proof of structure, J. Polym. Sci., Polym. Lett. Ed. 9: 419 (1971).Google Scholar
  48. 41.
    H. Pyysalo, J. Enqvist, E. Honkanen, and A. Pippuri, Identification of volatile lactones by NMR. I. Synthesis of y-and S-lactones and assignments in the carbon-13 NMR spectra of 4-hydroxyhexanoic and 5-hydroxyheptanoic acid lactones, Finn. Chem. Lett. 1975: 129; Chem. Abstr. 84: 69087 (1976).Google Scholar
  49. 42.
    N.W. Johnston, Catalyzed cyclization of vinyl chlorideacrylate, -fumarate, and -methacrylate copolymers, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 13: 1065 (1972); Chem. Abstr. 81: 64515 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ramendra N. Majumdar
    • 1
  • H. James Harwood
    • 1
  1. 1.Institute of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations