Advertisement

New Vinyl Organometallic Monomers: Synthesis and Polymerization Behavior

  • Marvin D. Rausch
  • David W. Macomber
  • Francis G. Fang
  • Charles U. PittmanJr.
  • T. V. Jayaraman
  • Ralph D. PriesterJr.
Part of the Polymer Science and Technology book series (POLS, volume 25)

Abstract

Organometallic polymers are useful in a variety of applications such as catalysts, UV absorbers, semiconductors, and antifouling agents.1–3 The construction of organometallic polymers can proceed by derivatizing preformed polymers with organometallic units3 or by preparing monomers with organometallic functions and polymerizing these monomers.2 Monomers 13 represent three examples of organometallic monomers which have been polymerized.4–7 In 2 6 and 3,7 the organometallic unit is far removed from the polymerizable vinyl group and does not directly effect the polymerization behavior via electronic effects. However, in vinylferrocene, 1, the organometallic moiety is directly attached to the vinyl group which leads, in turn, to some unusual effects in polymerization. For example, the rate of polymerization of vinylferrocene is first order in both monomer and initiator when initiated by AIBN in benzene (VP = 5.64 × 10−4[1]1.12 [AIBN]1.11).5 This is the result of a monomolecular termination mechanism caused by an electron transfer from iron to the radical center, followed by termination and subsequent decomposition to a paramagnetic Fe(III) center in the polymer. The presence of the transition metal, Fe, in the monomer permits such an unusual redox behavior which is impossible for ‘normal’ organic monomers (equation 1).

Keywords

Polymerization Behavior Vinyl Polymerization Titanocene Dichloride Electrophilic Aromatic Substitution Organometallic Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Carraher, Jr., J. E. Sheats, and C. U. Pittman, Jr., “Organomentallic Polymers,” Academic Press, New York (1978).Google Scholar
  2. 2.
    C. U. Pittman, Jr., Organomet. React, Synth., 6, 1 (1977).Google Scholar
  3. 3.
    C. U. Pittman, Jr., in “Polymer Supported Reactions in Organic Synthesis,” P. Hodge and D. C. Sherrington, eds., Wiley, New York (1980).Google Scholar
  4. 4.
    Y. Sasaki, L. L. Walker, E. L. Hurst, and C. U. Pittman, Jr., J. Polym. Sci. Chem. Ed., 11, 1213 (1973).CrossRefGoogle Scholar
  5. 5.
    M. H. George and G. F. Hayes, J. Polym. Sci. Chem. Ed., 13, 1049 (1975).CrossRefGoogle Scholar
  6. 6.
    C. U. Pittman, Jr., and G. V. Marlin, J. Polym. Sci. Chem. Ed., 11, 2753 (1973).CrossRefGoogle Scholar
  7. 7.
    N. Takaishi, H. Imai, C. A. Bertelo, and J. K. Stille, J. Am. Chem. Soc., 100, 264 (1978).CrossRefGoogle Scholar
  8. 8.
    M. H. George and G. F. Hayes, J. Polym. Sci. Chem. Ed., 14, 475 (1976).Google Scholar
  9. 9.
    C. Aso, T. Kunitake, and T. Nakashima, Macromol. Chem., 124, 232 (1969).CrossRefGoogle Scholar
  10. 10.
    C. R. Simionescu, Macromol. Chem., 163, 59 (1973).CrossRefGoogle Scholar
  11. 11.
    C. U. Pittman, Jr., and T. D. Rounsefell, Macromolecules, 9, 936 (1976) and references therein.Google Scholar
  12. 12.
    C. U. Pittman, Jr. and T. D. Rounsefell, Macromolecules, 9, 937 (1976).ADSGoogle Scholar
  13. 13.
    C. U. Pittman, Jr. and T. D. Rounsefell, Macromolecules, 11, 1022 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    E. A. Mintz, M. D. Rausch, B. H. Edwards, J. E. Sheats, T. D. C. Rounsefell, and U. Pittman, Jr., J. Organometal. Chem., 137, 199 (1977).CrossRefGoogle Scholar
  15. 15.
    C. U. Pittman, Jr., T. D. Rounsefell, E. A. Lewis, J. E. Sheats, B. H. Edwards, M. D. Rausch, and E. A. Mintz, Macromolecules, 11, 560 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    C. U. Pittman, Jr., and B. Surynarayanan, J. Amer. Chem. Soc., 96, 7916 (1974).CrossRefGoogle Scholar
  17. 17.
    C. U. Pittman, Jr., B. Surynarayanan, and Y. Sasaki in “Inorganic Compounds With Unusual Properties,” Adv. in Chem. Ser. No. 150, R. B. King, ed., American Chemical Society, Washington (1976).Google Scholar
  18. 18.
    D. O. Cowan, J. Park, C. U. Pittman, Jr., Y. Sasaki, T. K. Matherjee, and N. A. Diamond, J. Amer. Chem. Soc., 94, 5110 (1972).CrossRefGoogle Scholar
  19. 19.
    C. U. Pittman, Jr., and Y. Sasaki, Chem. Lett. Japan, 383 (1975).Google Scholar
  20. 20.
    A. B. Bocarsly, E. G. Walton, and M. S. Wrighton, J. Amer. Chem. Soc., 102, 3390 (1980).CrossRefGoogle Scholar
  21. 21.
    C. U. Pittman, Jr., O. E. Ayers, and S. P. McManus, J. Macromol. Sci. Chem., A7 (8), 1563 (1973).CrossRefGoogle Scholar
  22. 22.
    C. U. Pittman, Jr., P. Grube, and R. M. Hanes, J. Paint Technol., 46, (597), 35 (1974).Google Scholar
  23. 23.
    For a review, see D. W. Macomber, W. P. Hart, and M. D. Rausch, “Functionally Substituted Cyclopentadienyl Metal Compounds,” Adv. Organomet. Chem., 21, 1 (1982).CrossRefGoogle Scholar
  24. 24.
    M. D. Rausch, E. O. Fischer, and H. Grubert, J. Amer. Chem. Soc., 82, 76 (1960).CrossRefGoogle Scholar
  25. 25.
    F. A. Cotton and J. R. Leto, Chem. Ind. (London), 1368 (1958).Google Scholar
  26. 26.
    E. O. Fischer and K. Plesske, Chem. Ber., 91, 2719 (1958).CrossRefGoogle Scholar
  27. 27.
    E. O. Fischer and W. Fellman, J. Organometal. Chem., 1, 191 (1963).CrossRefGoogle Scholar
  28. 28.
    A. N. Nemseyanov, K. N. Anisimov, N. E. Kolobova, and L. I. Baryshnikova, Dokl. Akad. Nauk SSSR, 154, 646 (1964).Google Scholar
  29. 29.
    A. N. Nesmeyanov, N. E. Kolobova, K. N. Anisimov, and L. I. Baryshnikova, Izv. Akad. Nauk SSSR, Ser. Khim., 1135 (1964).Google Scholar
  30. 30.
    E. O. Fischer and K. Plesske, Chem. Ber., 93, 1006 (1960).CrossRefGoogle Scholar
  31. 31.
    R. Riemschneider, O. Goehring, and K. Kruger, Monatsh., 91, 305 (1960).CrossRefGoogle Scholar
  32. 32.
    R. Ercoli and F. Calderazzo, Chim. e Ind. (Milano), 42, 52 (1960)Google Scholar
  33. 33.
    E. O. Fischer and K. Plesske, Chem. Ber., 94, 93 (1961).CrossRefGoogle Scholar
  34. 34.
    W. P. Hart, Ph.D. Dissertation, University of Massachusetts, Amherst (1981).Google Scholar
  35. 35.
    M. D. Rausch and R. A. Genetti, J. Org. Chem., 35, 3888, USAGoogle Scholar
  36. 36.
    K. Hafner, G. Schultz, and K. Wagner, Justus Liebigs Annalen Chem., 678, 39 (1964).CrossRefGoogle Scholar
  37. 37.
    T. Okuyama, Y. Kenouchi, and T. Fueno, J. Amer. Chem. Soc., 100, 6162 (1978).CrossRefGoogle Scholar
  38. 38.
    W. P. Hart, D. W. Macomber, and M. D. Rausch, J. Amer. Chem. Soc., 102, 1196 (1980).CrossRefGoogle Scholar
  39. 39.
    J. M. Osgerby and P. L. Pauson, J. Chem. Soc., 4604 (1961).Google Scholar
  40. 40.
    D. W. Macomber, M. D. Rausch, T. V. Jayaraman, R. D. Priester, and C. U. Pittman, Jr., J. Organometal. Chem., 205, 353 (1981).CrossRefGoogle Scholar
  41. 41.
    D. W. Macomber, Ph.D. Dissertation, University of Massachusetts, Amherst (1982).Google Scholar
  42. 42.
    G. R. Knox and P. L. Pauson, J. Chem. Soc., 4610 (1961).Google Scholar
  43. 43.
    J. Hine and D. B. Knight, J. Ora. Chem., 35, 3946 (1970).CrossRefGoogle Scholar
  44. 44.
    D. W. Macomber, W. P. Hart, M. D. Rausch, R. D. Priester, and C. U. Pittman, Jr., J. Amer. Chem. Soc., 104, 884 (1982).CrossRefGoogle Scholar
  45. 45.
    N. E. Schore and B. E. LaBelle, J. Org. Chem., 46, 2306 (1981).CrossRefGoogle Scholar
  46. 46.
    D. W. Bonds, Jr., C. H. Brubaker, Jr., E. S. Chandrasekaran, C. Gibbons, R. H. Grubbs, and L. C. Kroll, J. Amer. Chem. Soc., 97, 2128 (1975).CrossRefGoogle Scholar
  47. 47.
    G. Bubitosa, M. Boldt, and H. H. Brintzinger, J. Amer. Chem. Soc., 99, 5174 (1977).CrossRefGoogle Scholar
  48. 48.
    B. H. Chang, R. H. Grubbs, and C. H. Brubaker, J. Organometal. Chem., 172, 81 (1979).CrossRefGoogle Scholar
  49. 49.
    P. Perkins and K. P. C. Vollhardt, J. Amer. Chem. Soc., 101, 3985 (1979).CrossRefGoogle Scholar
  50. 50.
    N. Hoffman and E. Weiss, J. Organometal. Chem., 131, 273 (1977).CrossRefGoogle Scholar
  51. 51.
    P. W. Tidwell and G. A. Mortimer, J. Macromol. Sci., Rev. Macromol. Chem., 5, 135 (1970).Google Scholar
  52. 52.
    C. U. Pittman, Jr., and T. D. Rounsefell, Comput. Chem. Instrum., 6 (1977).Google Scholar
  53. 53.
    C. U. Pittman, Jr., T. V. Jayaraman, R. D. Priester, Jr., S. Spencer, M. D. Rausch and D. W. Macomber, Macromolecules, 14, 237 (1981).ADSCrossRefGoogle Scholar
  54. 54.
    C. U. Pittman, Jr., R. D. Priester, Jr., and T. V. Jayaraman, J. Polym. Sci. Chem. Ed., 19, 3351 (1981).CrossRefGoogle Scholar
  55. 55.
    S. Warwel and P. Buschmeyer, Angew. Chem. Int. Ed. Eng., 17, 131 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Marvin D. Rausch
    • 1
  • David W. Macomber
    • 1
  • Francis G. Fang
    • 1
  • Charles U. PittmanJr.
    • 2
  • T. V. Jayaraman
    • 2
  • Ralph D. PriesterJr.
    • 2
  1. 1.Department of ChemistryUniversity of MassachusettsAmherstUSA
  2. 2.Department of ChemistryUniversity of Alabama UniversityUSA

Personalised recommendations