Macromolecular Dyes — Synthetic Strategies

  • Smarajit Mitra
Part of the Polymer Science and Technology book series (POLS, volume 25)


Colored macromolecular compounds abound in nature. Many colored resinous materials may be extracted from plant and animal sources, but a large majority of them are chemically complex mixtures, characterization of which remain serious analytical challenges. On the other hand, the syntheses of simpler and more clearly defined structurally colored polymers are of more recent origin, evolving largely from the need to impart hue to textile materials. Common dye molecules have low molecular weights and are soluble in aqueous or organic solvents and are, therefore, susceptible to continuous loss upon prolonged usage by diffusional and leaching processes. When such dye molecules are chemically bound to a macromolecule, be it the actual fibers of the textile or a secondary polymeric vehicle that strongly adheres to the fibers, significant enhancement of the fastness of the dyes result. Subsequent to this observation, many other applications of polymer bound dyes have been documented and some of these results will be described in the following pages.


Malachite Green Oxalyl Chloride Diacid Chloride Allyl Glycidyl Ether Terephthaloyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Manecke and G. Kossmehl, Makromol. Chem. 80 22 (1964)CrossRefGoogle Scholar
  2. 2.
    G. Manecke and G. Kossmehl, Chem. Ber. 93 1899 (1960)CrossRefGoogle Scholar
  3. 3.
    H. Kamogawa, J. M. Larkin, K. Toel and H. G. Cassidy, J. Polym. Sci. A 2 3603 (1964)Google Scholar
  4. 4.
    K. Shigehara, H. Matsunaga and E. Tsuchida, J. Polym. Sci. Polym. Chem. Ed. 16 1853 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    K. Okamoto, Y. Hasegawa, S. Kusabayashi and H. Mikawa, Bull. Chem. Soc. Jap. 41 2563 (1968)CrossRefGoogle Scholar
  6. 6.
    R. Lovrien and J. C. B. Waddington, J. Amer. Chem. Soc. 86 2315 (1964)CrossRefGoogle Scholar
  7. 7.
    Th. Dreyfus and E. Marechal, Bull. Soc. Chim. Fr. 1196, 1646 (1975)Google Scholar
  8. 8.
    M. Champenois and E. Marechal, Bull. Soc. Chim. Fr. 2217, 2220, 2223 (1975)Google Scholar
  9. 9.
    B. Sansoni, Naturwissenschaften 41 212 (1954)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ravve, C.W. Fitka and J. C. Brichta, U.S. Patent 3,267, 064 (1966)Google Scholar
  11. 11.
    R. L. Meek, C. E. Feazel, P. M. Daugherty, F. C. Mallory and E. P. Colfield, Jr., U. S. Patent 3, 278, 486 (1966)Google Scholar
  12. 12.
    E. J. M. Bonnet, Ger. Offen. 2,946, 965 (1980)Google Scholar
  13. 13.
    S. Nagashima, K. Tsuchiya and T. Tsuneda, Japan 73 08, 562 (1973)Google Scholar
  14. 14.
    Ph. Gangneux and E. Marechal, Bull. Soc. Chico. Fr. 1466, 1483 (1973)Google Scholar
  15. 15.
    E. Bonnet, Ph. Gangneux and E. Marechal, Bull. Soc. Chico. Fr. 504, 507 (1976)Google Scholar
  16. 16.
    A. LePape and E. Marechal, C. R. Acad. Sci. C284 517, 561, 619, 659 (1977)Google Scholar
  17. 17.
    A. LePape and E. Marechal, Bull. Soc. Chico. Fr. Chimie Molecul. 263 (1978)Google Scholar
  18. 18.
    B. Petir and E. Marechal, Bull. Soc. Chico. Fr. 1591, 1597, 1602 (1974)Google Scholar
  19. 19.
    C. E. Carraher, Jr., R.A. Schwarz, J. A. Schroeder and M. Schwarz, J. Macromol. Sci. Chem. A15 773 (1981)Google Scholar
  20. 20.
    B. Sansoni, Naturwissenschaften 39 281 (1952)Google Scholar
  21. 21.
    J. L. Keen, U. S. Patent 3,619, 356 (1971)Google Scholar
  22. 22.
    D. Dawson, R. Gless and R. E. Wingard, Jr., Chemtech 6 724 (1976)Google Scholar
  23. 23.
    D. J. Dawson, Aldrichimica Acta 14 23 (1981)Google Scholar
  24. 24.
    D. J. Dawson, K. M. Otteson, P. C. Wang and R. E. Wingard,Jr., Macromolecules 11 320 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    K. M. Otteson and D. J. Dawson, U. S. Patent 4,178, 422 (1979)Google Scholar
  26. 26.
    H. G. Nimmo and W. H. Holms, Biochemical Soc. Trans. 8 390 (1980)Google Scholar
  27. 27.
    P. D. G. Dean and D. H. Watson, J. Chromatography 165 301, 319 (1979)Google Scholar
  28. 28.
    A. J. Turner, Trends in Biochem. Sci. July 171 (1981)Google Scholar
  29. 29.
    M. Tahan, D. Perez and A. Zilkha, Isr. J. Chem. 2 191 (1971)Google Scholar
  30. 30.
    D. J. Dawson, R. D. Gless and R. E. Wingard, J. Amer. Chem. Soc. 98 5996 (1976)CrossRefGoogle Scholar
  31. 31.
    N. Bellanca, U. S. Patent 3,940, 503 (1976)Google Scholar
  32. 32.
    M. Bleha, Z. Plichta, E. Votavova and J. Kalal, U. S. Patent 4,166, 804 (1979)Google Scholar
  33. 33.
    A. Bernthsen, Liebigs Am. Chem. 251 1 (1889)CrossRefGoogle Scholar
  34. 34.
    D. Braun, Makromol. Chem. 33 181 (1959)CrossRefGoogle Scholar
  35. 35.
    V. A. Vasner and S. V. Vinogradova, Russ. Chem. Rev. 48 16 (1979)ADSCrossRefGoogle Scholar
  36. 36.
    S. V. Vinogradova, Vys. Soed. Ser. A 19 667 (1977)Google Scholar
  37. 37.
    T. Sulzberg and R. J. Cotter, Macromolecules 2 146 (1969)ADSCrossRefGoogle Scholar
  38. 38.
    V. V. Korshak, V. A. Vasner, S. V. Vinogradova and A. V. Vasilev Vys. Soed. Ser. A 16 502 (1974)Google Scholar
  39. 39.
    V. V. Korshak, S.V. Vinogradova, A. V. Vasilev and V. A. Vasnev Vys. Soed. Ser. A 14 56 (1972)Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Smarajit Mitra
    • 1
  1. 1.Central Research Laboratories3M CompanySt. PaulUSA

Personalised recommendations