The Role of Molecular Charge in the Extravasation and Clearance of Protein Tracers in Blood-Brain Barrier Impairment and Cerebral Edema

  • H. J. Houthoff
  • R. C. Moretz
  • H. G. Rennke
  • H. M. Wisniewski


In various models of blood-brain barrier (BBB) impairment with the formation of brain edema, differences in the extravasation and spreading through the brain of protein tracers have been reported. These differences could be attributed in part to the use of differ-ent detection methods10,18,27 but in other cases appeared to be tracer dependent11,13,26. Intravenously injected horseradish peroxidase (HRP) and endogenous serum albumin as well as IgG have been used as the main protein tracers; differences in their extravasation and spreading could not be fully explained by molecular weight or molecular radius13. This suggested the involvement of other factors. In the study of glomerular pathology with proteinuria, the molecular charge of serum proteins has been shown to constitute such a factor2,19.


Brain Edema Cerebral Edema Molecular Charge Protein Tracer Endocytotic Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasberg RG: Clearance of serum albumin from brain extracellular fluid: a possible role in cerebral edema. In: Dynamics of brain edema. Pappius HM, Feindel W, Eds. Springer Verlag, New York 98–102 (1976).CrossRefGoogle Scholar
  2. 2.
    Brenner BM, Hostetter TH, Humes HD: Molecular basis of protein-uria of glomerular origin. New Engl J Med, 298: 826–833 (1978).CrossRefGoogle Scholar
  3. 3.
    Brightman MW: Morphology of blood-brain interfaces. Exp Eye Res, Suppl 25: 1–25 (1977).CrossRefGoogle Scholar
  4. 4.
    Castejon HV, Castejon OJ: Application of alcian blue and OS-DMEDA in the electronhistochemical study of the cerebellar cortex. Rev Micr Electr 1: 207–266 (1972).Google Scholar
  5. 5.
    Caulfield JP, Farquhar MG: Distribution of anionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc Natl Acad Sci USA, 73: 1646–1650 (1976).CrossRefGoogle Scholar
  6. 6.
    Cserr HF, Cooper DN, Milhorat TH: Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res Suppl 25: 461–473 (1977).CrossRefGoogle Scholar
  7. 7.
    Davies PF, Rennke HG, Cotran RS: Influence of molecular charge upon the endocytosis and intracellular fate of peroxidase activity in cultured arterial endothelium. J Cell Sci, 49: 69–86 (1981).Google Scholar
  8. 8.
    Feigin I: The effect of saponification on the mucopoly-saccharides of the ground substance of the human brain: the relation to focal edema and multiple sclerosis. J Neuropath exp Neurol, 40: 102–111 (1981).CrossRefGoogle Scholar
  9. 9.
    Gazendam J, Houthoff HJ, Huitema S, Go KG: Cerebral edema formation and blood-brain barrier impairment by intraventricular collegenase infusion. This symposium.Google Scholar
  10. 10.
    Go KG, Houthoff HJ, Huitema S, Spatz M: Protein tracer permeability of the blood-brain barrier after transient cerebral ischemia in gerbils. This symposium.Google Scholar
  11. 11.
    Houthoff HJ, Go KG: Endogenous versus exogenous protein tracer passage in blood-brain barrier damage. In: Brain Edema, eds. Cervós-Navarro J, Ferszt R: (Eds) Adv Neurol 28 Raven Press, New York 75–81 (1980).Google Scholar
  12. 12.
    Houthoff HJ, Go KG, Huitema S: The permeability of cerebral capillary endothelium in cold injury. Comparison of an endogenous and exogenous protein tracer. In: Cerebral microcirculation and metabolism, Cervós-Navarro J, Fritscheka E, (Eds) Adv Neurol 29. Raven Press, New York 331–336 (1981).Google Scholar
  13. 13.
    Houthoff HJ, Go KG, Gerrits PO: The mechanisms of blood-brain barrier impairment by hyperosmolar perfusion. Acta Neuropathol (Berl) 56: 99–112 (1982).CrossRefGoogle Scholar
  14. 14.
    Klatzo I, Chui E, Fujiwara K, Spatz M: Resolution of vasogenic brain edema (VBE). In: Brain Edema. Cervôs-Navarro J, Ferszt R, (Eds) Adv Neurol 28 Raven Press, New York 359–373 (1980).Google Scholar
  15. 15.
    Lossinsky AS, Vorbrodt AW, Wisnieuwski HM Moretz RC: A simple screening procedure for evaluating central nervous system tissue sections showing structural and cytochemical alterations of the blood-brain barrier. Stain Technol 56: 279–282 (1981).Google Scholar
  16. 16.
    Luft JH: Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171: 369–416 (1971).CrossRefGoogle Scholar
  17. 17.
    Marmarou A, Takagi H, Shulman K: Biomechanics of brain edema and effects on local cerebral blood flow. In: Brain Edema. Cervôs-Navarro J, Ferszt R, (Eds) Adv Neurol 28. Raven Press New York 345–358 (1980).Google Scholar
  18. 18.
    Petito CK: Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38: 222–234 (1979).CrossRefGoogle Scholar
  19. 19.
    Rennke HG, Venkatachalam MA: Glomerular permeability: In vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int 11: 44 (1977).CrossRefGoogle Scholar
  20. 20.
    Rennke HG, Patel Y, Venkatachalam MA: Glomerular filtration of proteins: Clearance of anionic, neutral and cationic horseradish peroxidase in the rat. Kidney Int 13: 278 (1978).CrossRefGoogle Scholar
  21. 21.
    Rennke HG, Venkatachalam MA: Chemical modification of horse-radisch peroxidase: Preparation and characterization of tracer enzymes with different isoelectric points. J Histochem Cytochem 10: 1352–1353 (1979).CrossRefGoogle Scholar
  22. 22.
    Schurer JW, Kalicharin D, Hoedemaeker PhJ, Molenaar I: the use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils. J Histochem Cytochem 26: 688–689 (1978).CrossRefGoogle Scholar
  23. 23.
    Simionescu N, Simionescu M, Palade GE: Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. Microvasc Res 15: 17–36 (1978).CrossRefGoogle Scholar
  24. 24.
    Spurr AR: A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31 (1969).CrossRefGoogle Scholar
  25. 25.
    Westergaard E: The blood-brain barrier to horseradish peroxi-dase under normal and experimental conditions. Acta Neuropathol (Berl) 39: 181–187 (1977).CrossRefGoogle Scholar
  26. 26.
    Wisniewski HM, Kozlowski PB: Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann NY Acad Sci in press. (1982).Google Scholar
  27. 27.
    Wolman M, Klatzo I, Chui E, Wilmes F, Nishimoto K, Fujiwara K, Spatz M: Evaluation of the dye-protein tracers in pathophysio-logy of the blood-brain barrier. Acta Neuropathol (Berl) 54: 55–61 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. J. Houthoff
    • 3
  • R. C. Moretz
    • 1
    • 2
  • H. G. Rennke
    • 1
    • 2
  • H. M. Wisniewski
    • 1
    • 2
  1. 1.New York State Institute for Basic Research in Developmental Disabilities, Staten Island NYBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of PathologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Visiting scientist from the University of GroningenThe Netherlands

Personalised recommendations