Skip to main content

The Effect of a Calcium Antagonist on the , Formation of Cerebral Ischemic Edema and Ion Homeostasis

  • Chapter
Recent Progress in the Study and Therapy of Brain Edema

Abstract

There has been considerable recent discussion on the mechanism of cell injury in ischemia, much of which has centered on the role of raised intracellular calcium activity33,16,17,25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup J, Symon L, Branston NM, Lassen NA: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8: 51–57 (1977).

    Article  Google Scholar 

  2. Bing RJ: Action of anti-anginal drugs on cardiac metabolism. Adv Myocardiol 2: 465–476 (1980).

    Google Scholar 

  3. Branston NM, Strong AJ, Symon L: Extracellular potassium activity, evoked potential and tissue blood flow, relationship during progressive ischaemia in baboon cerebral cortex. J. Neurol Sci 32: 305–321 (1977).

    Article  Google Scholar 

  4. Branston NM, Bell BA, Hunstock A, Symon L: Time and flow as factors in the formation of postischemic edema in primate cortex. In: Brain edema, Cervos-Navarro J, Ferszt R (Eds) Raven Press, New York. Adv Neurol 28: 291–298 (1980).

    Google Scholar 

  5. Carter LP, Atkinson JR: Autoregulation and hyperemia of cerebral blood flow as evaluated by thermal diffusion. Stroke 4: 917–922 (1973).

    Article  Google Scholar 

  6. Church J, Zsesoter TT: Calcium antagonistic drugs. Mechanism of action. Can J Physiol Pharmacol 58: 254–264 (1980).

    Article  Google Scholar 

  7. Craigen ML, Harper AM, Kazda S: Effect of a calcium antagonist (nimodipine) on CBF and metabolism. J Cerebral Blood Flow and Metabolism vol 1 (suppl. 1) S407 (1981).

    Article  Google Scholar 

  8. Edvinsson L, Brandt L, Andersson KE, Bengtsson B: Effect of a calcium antagonist on experimental constriction of human brain vessels. Surg Neurology 11: 327–330 (1979).

    Google Scholar 

  9. Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17: 149–166 (1977).

    Article  Google Scholar 

  10. Godfraind T, Morel N: Inhibitors of calcium influx. Mechanisms of vasodilatation, Satellite symp, 27th Int Congres Physiol Sci. Wilrijk Karger, Basel, 144–151 (1978).

    Google Scholar 

  11. Gross GJ, Warltier DC, Jolly SR, Hardman HF: Comparative effects of a new calcium antagonist, FR 7534, nitroglycerin and dipyridamole on regional myocardial blood flow and cardiac contractility during partial coronary artery occlusion in the dog. J Cardiovasc Pharmacol 2: 797–813 (1980).

    Article  Google Scholar 

  12. Harper AM: The inter-relationship between aPCO2 and blood pressure in the regulation of blood flow through the cerebral cortex. Acta Neurol Scand 41: (suppl. 14) 94–103 (1965).

    Article  Google Scholar 

  13. Harris RJ, Symon L: A double ion sensitive micro-electrode for extracellular cortical measurement. J Physiol (Lond) 312: 3P (1981).

    Google Scholar 

  14. Harris RJ, Symon L, Branston NM, Bayhan M: Changes in extracellular calcium activity in cerebral ischemia. J Cerebral Blood Flow Metabol 1(2): 203–210 (1981).

    Article  Google Scholar 

  15. Harris RJ, Bayhan M, Branston NM, Watson A, Symon L: Modulation of the pathophysiology of primate focal cerebral ischemia by indomethacin. Stroke 13: 17–24 (1982).

    Article  Google Scholar 

  16. Hass W: Beyond cerebral blood flow, metabolism and ischemic thresholds: An examination of the role of calcium in the initiation of cerebral infarction. In: Cerebral Vascular Disease 3, Meyer JS, Lechner H, Reivich M, Ott Eo, Arabinar A (Eds). Proc 10th Salzburg Conference, Excerpta Medica Amsterdam, 3–17 (1981).

    Google Scholar 

  17. Hearse DJ: Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 9: 605–616 (1977).

    Article  Google Scholar 

  18. Henry PD, Schuchleib R, Davis J, Weiss ES, Sobel BE: Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am J Physiol 233(6): H677–H684 (1977).

    Google Scholar 

  19. Hoffmeister F, Kazda S, Krause HP: Influence of nimodipine (BAY e 9736) on the postischemic changes of brain function. In Cerebral blood flow and metabolism, Gotoh F, Nagai H, Tazaki Y (Eds). Acta Neurol Scand 60 (suppl 72), Copenhagen, Munksgaard, 358–359 (1979).

    Google Scholar 

  20. Kazda S, Hoffmeister F, Garthoff B, Towart R: Prevention of postischemic impaired reperfusion of the brain by nimodipine (BAY e 9736). In: Cerebral blood flow and metabolism, Gotoh F, Nagai H, Tazaki Y (Eds). Acta Neurol Scand 60: (suppl. 72) Copenhagen, Munksgaard 302–303 (1979).

    Google Scholar 

  21. Ott E, Lechner H: The influence of nimodipine on cerebral blood flow in patients with subacute cerebral infarction, (abstract) In: Pathophysiology and pharmacotherapy of cerebrovascular disorders, Betz E, Grote J, Heuser D, Wullenweber R (Eds). Satellite Symposium of the XXVIII Int Congress Physiol Sci, (1980).

    Google Scholar 

  22. Pasztor E, Symon L, Dorsch NW, Branston NM: The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nuclei of baboons. Stroke 4: 556–567 (1973).

    Article  Google Scholar 

  23. Perez JE, Sobel BE, Henry PD: Improved performance of ischemic canine myocardium in response to nifedipine and diltiazem Am J Physiol 239: H658–663 (1980).

    Google Scholar 

  24. Poole-Wilson P: Entry of Ca2+ into the ischaemic myocardium. Richardson RG (Ed) Ca++-antagonism, Abbott Laboratories Ltd. London (1980).

    Google Scholar 

  25. Schanne FAX, Kane AB, Young EE, Farber JL: Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702 (1979).

    Article  Google Scholar 

  26. Symon L, Pasztor E, Dorsch NWC, Branston NM: Physiological responses of local areas of the cerebral circulation in experimental primates determined by the method of hydrogen clearance. Stroke 4: 632–642 (1973).

    Article  Google Scholar 

  27. Symon L, Pasztor E, Branston NM: The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion — an experimental study by the technique of hydrogen clearance in baboons. Stroke 5: 355–364 (1974).

    Article  Google Scholar 

  28. Symon L: Experimental model of stroke in the baboon. In: Primate models of neurological disorders, Meldrum BS, Marsden CD (Eds) Adv Neurol 10 Raven Press New York, 199–212 (1975).

    Google Scholar 

  29. Symon L, Branston NM, Chikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons. Relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10: 184–191 (1979).

    Article  Google Scholar 

  30. Towart R, Kazda S: The cellular mechanism of action of nimodipine (BAY e 9736), a new calcium antagonist. Brit J Pharmacol 67(3): 409P, (1979).

    Article  Google Scholar 

  31. Towart R, Kazda S: The effects of nimodipine (BAY e 9736) on cerebral and peripheral vessels. In: Pathophysiology & Phar-macotherapy of cerebrovascular disorders, Betz E, Grote J, Heuser D, Wullenweber R (Eds). XXVIII Int Congr Physiol, Verlag Gerhard Witzstrock Baden-Baden 64–67 (1980).

    Google Scholar 

  32. Towart R, Kazda S: Selective inhibition of serotonin-induced contractions of the rabbit basilar artery by nimodipine (BAY e 9736). IRCS 8: 206 (1980).

    Google Scholar 

  33. Trump BF, Berezesky IK, Laiho KU, Osornia AR, Mergner WJ, Smith MW: The role of calcium in cell injury. A review. In: Scanning Electron Microscopy II. SEM, Inc AMF O’Hare, II 60666, 437–462 (1980).

    Google Scholar 

  34. Weishaar RJ, Ashikawa K, Bing RJ: Effect of Diltiazem, a calcium antagonist, on myocardial ischemia. Am J Cardiol 43: 1137–1143 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Harris, R.J., Branston, N.M., Symon, L. (1984). The Effect of a Calcium Antagonist on the , Formation of Cerebral Ischemic Edema and Ion Homeostasis. In: Go, K.G., Baethmann, A. (eds) Recent Progress in the Study and Therapy of Brain Edema. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4616-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4616-6_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4618-0

  • Online ISBN: 978-1-4684-4616-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics