Brain Edema Following Focal Cerebral Ischemia in the Rat

  • Taku Shigeno
  • Graham M. Teasdale
  • James McCulloch
  • David Mandelow
  • David I. Graham


The small-animal model of focal cerebral ischemia produced by occluding a middle cerebral (MCA) of the rat has already proved useful in the studies of pathophysiology of this type of cerebro-vascular disease12,13. Even though there are several other models of cerebral ischemia in small animals, such as mongolian gerbils or rats, occlusion of the middle cerebral artery has the advantage of producing focal incomplete ischemia, such as is most commonly encountered in human stroke. Because of the reproducibility of the MCA occlusion model (in respect of the distribution of irreversible ischemic cell changes and the topography and magnitude of alterations in local cerebral blood flow) this experimental approach is particularly suited for investigations with the range of autoradio-graphic techniques, now available to assess blood-brain barrier (BBB) permeability and local cerebral blood flow (CBF).


Specific Gravity Middle Cerebral Artery Occlusion Caudate Nucleus Brain Edema Focal Cerebral Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasberg RG, Patlak CS, Jehle JW, Fenstermacher JD: An auto-radiographic technique to measure the permeability of normal and abnormal brain capillaries. Neurology 28: 363 (1978) (Abstract).CrossRefGoogle Scholar
  2. 2.
    Fujimoto T, Walker JT Jr, Spatz M, Klatzo I: Pathophysiologic aspects of ischemic edema, in Dynamics of Brain Edema. Pappius HM, Feindel W (eds.): Berlin: Springer, 171–180 (1976).CrossRefGoogle Scholar
  3. 3.
    Hallenbeck JM, Furlow TW Jr: Prostaglandin I2 and indomethacin prevent impairment of post-ischemic brain reperfusion in the dog. Stroke 10: 629–637 (1979).CrossRefGoogle Scholar
  4. 4.
    Iannotti F, Hoff JT, Crockard A: Does reperfusion improve ischemic edema? J Cereb Blood Flow Metabol 1 (Suppl. 1): S168–169 (1981).Google Scholar
  5. 5.
    Kamijo Y, Garcia JH, Cooper J: Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropath Exp Neurol 36: 338–350 (1977).CrossRefGoogle Scholar
  6. 6.
    Sakurada O, Kennedy C, Jehle JW, Brown JD, Carbin GL, Sokoloff L: Measurement of local cerebral blood flow with iodo 14C anti-pyrine. Am J Physiol 234: H59–H66 (1978).Google Scholar
  7. 7.
    Schuier FJ, Hossmann KA: Experimental brain infarcts in cats. II. Ischémie brain edema. Stroke 11: 593–601 (1980).CrossRefGoogle Scholar
  8. 8.
    Shigeno T, Brock M, Shigeno S, Fritschka E, Cervos-Navarro J: The determination of brain water content: microgravimetry versus drying-weighing method. J Neurosurg (in press).Google Scholar
  9. 9.
    Shigeno T, Fritschka M, Brock M, Shigeno S: Ischemic brain edema: cytotoxic versus vasogenic. In: Intracranial Pressure V. Berlin: Springer, (in press).Google Scholar
  10. 10.
    Symon L, Branston NM, Chikovani O: Ischémie brain edema following middle cerebral artery occlusion in baboons: Relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10: 184–191 (1979).CrossRefGoogle Scholar
  11. 11.
    Tamura A, Asano T, Sano K: Correlation between rCBF and histo-logical changes following temporary middle cerebral artery occlusion. Stroke 11: 487–493 (1980).CrossRefGoogle Scholar
  12. 12.
    Tamura A, Graham DI, McCulloch J, Teasdale GM: Focal cerebral ischemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metabol 1: 53–60 (1981).CrossRefGoogle Scholar
  13. 13.
    Tamura A, Graham DI, McCulloch J, Teasdale GM: Focal cerebral ischemia in the rat: 2. Regional cerebral blood flow determined by (14c) iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metabol 1: 61–69 (1981).CrossRefGoogle Scholar
  14. 14.
    Tyson GW, Teasdale GM, Graham DI, McCulloch J: Cerebrovascular permeability following middle cerebral artery occlusion in the rat: The effect of halothane-induced hypotension. J Neurosurg (in press).Google Scholar
  15. 15.
    Welsh FA, O’Connor MJ, Marcy VR, Spatacco AJ, Johns RL: Factors limiting regeneration of ATP following temporary ischemia in cat brain. Stroke 13: 234–242 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Taku Shigeno
    • 1
  • Graham M. Teasdale
    • 1
  • James McCulloch
    • 2
  • David Mandelow
    • 1
  • David I. Graham
    • 3
  1. 1.Department of NeurosurgeryUniversity of GlasgowGlasgowUK
  2. 2.Wellcome Surgical InstituteUniversity of GlasgowGlasgowUK
  3. 3.Department of NeuropathologyUniversity of GlasgowGlasgowUK

Personalised recommendations