Advertisement

NMR Studies of Brain Edema and Tumor Tissues in Stereotactic Biopsies: Correlation With Physical And Histopathological Parameters

  • A. L. Benabid
  • J. F. Lebas
  • J. L. Leviel
  • M. Decorps

Abstract

There is no doubt that Nuclear Magnetic Resonance (NMR) will in a very close future be the basis of medical imaging. NMR studies have already proven to be useful in brain edema10 or in brain tumor studies8.13. However, the biological basis of the reported changes in NMR relaxation times of pathological tissues is not yet clearly understood.

Keywords

Brain Edema Nuclear Magnetic Resonance Study Stereotactic Biopsy Spin Lattice Relaxation Time Nuclear Magnetic Resonance Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beall, PT, Asch BB, Chang DC, Medina D, Hazlewood CF: Distinction of normal, preneoplastic and neoplastic mouse primary cell cultures by water NMR relaxation times. J Natl Cancer Inst 64: 335–338 (1980).Google Scholar
  2. 2.
    Beall PT, Rau PN, Huggins RA, Hazlewood CF: NMR patterns of intracellular water as a function of Hela cell cycle. Science, 192: 904–907 (1976).CrossRefGoogle Scholar
  3. 3.
    Benabid AL, Persat JC, Chirossel JP, De Rougemont J, Barge M: Apport de la stéréoimpédoencéphalographie pour la détermination des limites des tumeurs cérébrales. Neurochir, 24: 3–14 (1978).Google Scholar
  4. 4.
    Benabid AL, Persat JC, Chirossel JP, De Rougemont J, Barge M, Salamon G, Farnarier P: Correlative study between computerized tranverse scanning and SIEG in space occupying lesions of the brain. Acta Neurochir, 46: 219–232 (1979).CrossRefGoogle Scholar
  5. 5.
    Benoist L, Chatel M, Menault F, De Certaines J: Variation des temps de relaxation dans les tumeurs humaines intracranlennes. J Biophys Med Nucl, 5: 143–146 (1981).Google Scholar
  6. 6.
    Bizot J: Méthode automatique de dosage de petites quantités d’eau. Bull Soc Chim, 6: 151–157 (1967).Google Scholar
  7. 7.
    Brunetti AH: Computation of T1 from pulsed NMR data using a generalized and rapid least-squares formula. J Magn Res, 28: 289–293 (1977).Google Scholar
  8. 8.
    De Certaines J: Variation des temps de relaxation spin réseau et spin-spin de tissus biologiques en RMN du proton. J Biophys Med Nucl, 5: 107–116 (1981).Google Scholar
  9. 9.
    Fung BM: Correlation of relaxation time with water content in muscle and brain tissue. Bioch Biophys Acta, 497: 317, 322 (1977).Google Scholar
  10. 10.
    Go, KG, Edzes HT: Water in brain edema — observations by the pulsed nuclear magnetic resonance technique. Arch Neurol, 32: 462–464 (1975).CrossRefGoogle Scholar
  11. 11.
    Marmarou A, Poll DW, Shulman KD, Bhagavan MDH: A simple gravimetric technique for measurement of cerebral edema. J Neurosurg, 49: 530–537 (1981).Google Scholar
  12. 12.
    Organ LW, Tasker RR, Moody NF: Brain tumor localization using an electrical impedance technique. J Neurosurg, 28: 35–43 (1968).CrossRefGoogle Scholar
  13. 13.
    Parrish RG, Kurland RJ, Janese WW, Bakay L: Proton relaxation rates of water in brain and brain tumors. Science, 183: 438–439 (1974).CrossRefGoogle Scholar
  14. 14.
    Takagi H, Shapiro K, Marmarou A, Wisoff H: Microgravimetric analysis of human brain tissue. J Neurosurg, 54: 797–801 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. L. Benabid
  • J. F. Lebas
  • J. L. Leviel
  • M. Decorps

There are no affiliations available

Personalised recommendations