Flow-Induced Crystallization and Orientation from the Melt

  • J. R. Collier
  • K. Lakshmanan
  • L. Ankrom
  • S. K. Upadhyayula
Part of the Polymer Science and Technology book series


Highly oriented fibers and ribbons of polyethylene and polypropylene were formed in a process using a single screw plasticating extruder as the melt source. These extrudates exhibited properties typical of highly oriented semicrystalline polymers: transparency, fibrous morphology, elevated melting temperatures, and high initial and secant moduli and yield strength. This process had demonstrated the capability of imparting controlled levels of uniaxial and apparently biaxial orientation, that range up to exceptionally high values. A conditioned polymer melt is fed to specially designed and operated dies where it experiences elongational flow to impart orientation in the desired direction(s), and at least the outer sheath of the extrudate is crystallized in the fixed boundary land of the die prior to exiting. The flow behavior in one of the dies used in this process has been modeled illustrating the streamlines that exist.


Screw Speed Shaping Section Machine Direction Single Screw Outer Sheath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Collier, T.Y.T. Tam, J. Newcome, and N. Dinos, Polym Eng. Sci., 16, 204 (1976).CrossRefGoogle Scholar
  2. 2.
    J.R. Collier, S.L. Chang, S.K. Upadhyayula, Midland Macro. Mono., No. 6, edited by R.L. Miller (1978).Google Scholar
  3. 3.
    J.R. Collier and S.K. Upadyayula, A.I.Ch.E. National Annual Convention, Miami Beach, Nov. 15, 1978.Google Scholar
  4. 4.
    S.K. Upadhyayula, Thesis, Chem. Eng., Ohio University (1978).Google Scholar
  5. 5.
    K. Lakshmanan, Thesis, Chem. Eng., Ohio University (1981).Google Scholar
  6. 6.
    L. Ankrom, Thesis, Chem. Eng., Ohio University (1981).Google Scholar
  7. 7.
    A. Keller and M.J. Machin, J. Macromol. Sci.-Phys., Bl, 41 (1969).Google Scholar
  8. 8.
    M.J. Hill and A. Keller, J. Macromol. Sci.-Phys., B3, 153 (1969).CrossRefGoogle Scholar
  9. 9.
    E.H. Andrews, Proc. Roy. Soc. (London), A277, 562 (1964).ADSGoogle Scholar
  10. 10.
    T.W. Haas and B. Maxwell, Polym. Eng. Sci., 9, 255 (1969).CrossRefGoogle Scholar
  11. 11.
    A.J. Pennings and A.M. Kiel, Kolloid-Z.Z. Polymere, 205, 160 (1965).CrossRefGoogle Scholar
  12. 12.
    K. Kobayashi and T. Nagasawa, J. Macromol. Sci.-Phys., B4, 331 (1970).CrossRefGoogle Scholar
  13. 13.
    D. Krueger and G.S.Y. Yeh, J. Appl. Phys., 43, 4339 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    T. Kawai, R. Kamoto, K. Ehara, T. Matsumoto, and H. Maeda, Sen-i Gakkaishi, 26, 80 (1970).CrossRefGoogle Scholar
  15. 15.
    A.K. Fritzsche and F.P. Price, Polym. Eng. Sci., 14, 401 (1974).CrossRefGoogle Scholar
  16. 16.
    B. Wunderlich, J. Polym. Sci., A2, 3697 (1964).Google Scholar
  17. 17.
    B. Wunderlich and T. Davidson, J. Polym. Sci., Pt. A-2, 7, 2043 (1969).CrossRefGoogle Scholar
  18. 18.
    T. Davidson and B. Wunderlich, J. Polym. Sci., Pt. A-2, 7, 2051 (1969).CrossRefGoogle Scholar
  19. 19.
    C.L. Gruner, B. Wunderlich and R.C. Bopp, J. Polym. Sci., Pt. A-2, 7, 2061 (1969).CrossRefGoogle Scholar
  20. 20.
    R.B. Prime and B. Wunderlich, J. Polym. Sci., Pt. A-2, 7, 2061 (1969).CrossRefGoogle Scholar
  21. 21.
    E.S. Clark and L.S. Scott, Polym. Eng. Sci., 14, 682 (1974).CrossRefGoogle Scholar
  22. 22.
    J.R. Collier, T.Y.T. Tam, J. Newcome, and N. Dinos, Polym. Eng. Sci., 16, 204 (1976).CrossRefGoogle Scholar
  23. 23.
    R.S. Porter and A.E. Zachariades, International Symposium on Mechanical Properties of Crystalline Polymers, U. of Mass., Amherst, MA, Oct. 1980.Google Scholar
  24. 24.
    J.R. Kastelic, ACS National Meeting, Atlanta, GA, April, 1981.Google Scholar
  25. 25.
    S. Goldstein (ed.), “Modern Developments in Fluid Dynamics”, Vol. I, p. 105, Oxford University (1938).Google Scholar
  26. 26.
    P.N. Kaloni, J. of Phys. Soc. of Japan, 20, 132 (1965).ADSMATHCrossRefGoogle Scholar
  27. 27.
    N.C.P. Ramacharyula, Zeitschrift fuer Angewandte Mathematik und Mechnik, 47, 9 (1967).CrossRefGoogle Scholar
  28. 28.
    C.D. Han and L.H. Drexler, J. Appl. Polym. Sci., 17, 2369 (1973).CrossRefGoogle Scholar
  29. 29.
    W.J.R. Chen, Ph.D. Dissertation, Chem. Eng., Syracuse Univ. (1971).Google Scholar
  30. 30.
    D. Greenspan, J. Fluid Mech., 57, 167 (1973).ADSMATHCrossRefGoogle Scholar
  31. 31.
    L. Lapidus, “Digital Computation for Chemical Engineers”, McGraw-Hill Book Co., Inc., NY (1962).Google Scholar
  32. 32.
    B. Appelt, L. Wang and R.S. Porter, Society of Rheology 52nd Annual Meeting, Williamsburg, VA, Feb. 1981.Google Scholar
  33. 33.
    C.B. Rao, Thesis, Chem. Eng., Ohio University (1980).Google Scholar
  34. 34.
    S.L. Chang, Thesis, Chem. Eng., Ohio University (1977).Google Scholar
  35. 35.
    J. Brandrup and E.H. Immergut (Editors), “Polymer Handbook”, Second Edition, John Wiley and Sons, NY, pp. 1–21 (1975).Google Scholar
  36. 36.
    S. Middleman, “Fundamentals of Polymer Processing”, McGraw-Hill Book Co., NY (1977).Google Scholar
  37. 37.
    Personal Communication, Dr. Joseph Spruiell, Univ. of Tennessee, Dec. 1978.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. R. Collier
    • 1
  • K. Lakshmanan
    • 1
  • L. Ankrom
    • 1
  • S. K. Upadhyayula
    • 1
  1. 1.Chemical Engineering DepartmentOhio UniversityAthensUSA

Personalised recommendations