Advertisement

Crystal Nucleation in Flowing Polymer Melts

  • Mark S. Pucci
  • Stephen H. Carr
Part of the Polymer Science and Technology book series

Abstract

The crystallization of polymers either undergoing, or having recently undergone, flow is a means of affecting polymer morphology, and, as such, it is of special interest to the field of polymer processing. This is because virtually all of today’s processing methods involve flow of a polymer melt either prior to or during solidification. Since flow is such an integral part of commercial processing, it is important to understand the effect which it can have on crystal texture. With this knowledge, it will not only be possible to control final properties of the material but also it will be possible to avoid inadvertant occurrence of flow-induced crystallization.

Keywords

Shear Rate Nucleation Rate Induction Time Elongation Rate Crystal Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Pennings and A. M. Kiel, Kolloid-Z., 205, 160 (1965).CrossRefGoogle Scholar
  2. 2.
    A. J. Pennings, “Proc. Inter. Conf. Crystal Growth, Boston, 1966”, p. 389, Pergamon Press, Oxford (1966).Google Scholar
  3. 3.
    A.J. Pennings, C. J. H. Schouteten, and A. M. Kiel, J. Poly. Sci., Part C, 38, 267 (1972).Google Scholar
  4. 4.
    T. Kawai, T. Matsumoto, M. Kato and H. Maeda, Kolloid-Z., 222, 1 (1968).CrossRefGoogle Scholar
  5. 5.
    D. A. Blackadder and H. M. Schleinitz, Nature, 200, 778 (1963).ADSCrossRefGoogle Scholar
  6. 6.
    D. C. Bassett and A. Keller, Phil. Mag., 7, 1553 (1963).ADSCrossRefGoogle Scholar
  7. 7.
    A. M. Rijke, J. T. Hunter, and R. D. Flanagan, J. Poly. Sci., Part A-2, 9, 531 (1971).CrossRefGoogle Scholar
  8. 8.
    A. Keller and F. M. Willmouth, J. Macromol. Sci., Phys., B6(3), 493 (1972).Google Scholar
  9. 9.
    A. Keller and F. M. Willmouth, J. Macromol. Sci., Phys., B6(3), 539 (1972).Google Scholar
  10. 10.
    A. J. Pennings, A.M.A.A. van der Mark, and A. M. Kiel, Kolloid-Z., 237, 336 (1970).CrossRefGoogle Scholar
  11. 11.
    A. G. Wikjord and R. St. John Manley, J. Macromol. Sci., Phy., B2(3), 501 (1968).CrossRefGoogle Scholar
  12. 12.
    W. George and P. Tucker, Poly. Eng. Sci., 15(6), 451 (1975).CrossRefGoogle Scholar
  13. 13.
    D. Krueger and G.S.-Y. Yeh, J. Macromol. Sci., Phys., B6(3), 431 (1972).Google Scholar
  14. 14.
    F. M. Willmouth, A. Keller, I. M. Ward, and T. Williams, J. Poly. Sci., Part A-2, 6, 1627 (1968).CrossRefGoogle Scholar
  15. 15.
    B. Wunderlich, C. M. Cormier, A. Keller, and M. J. Machin, J. Macromol. Sci., Phys., Bl(l), 93 (1967).Google Scholar
  16. 16.
    E. H. Andrews, Proc. Roy. Soc. (London), A227, 562 (1964).ADSGoogle Scholar
  17. 17.
    E. H. Andrews, J. Poly. Sci., A-24, 668 (1966).Google Scholar
  18. 18.
    E. H. Andrews and B. Reeve, J. Mater. Sci., 6, 547 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    A. Keller and M. J. Machin, J. Macromol. Sci., Phys. Bl(l), 41 (1967).Google Scholar
  20. 20.
    P.Y.-F. Fung and S. H. Carr, J. Macromol. Sci., Phys. B6(4), 621 (1972).Google Scholar
  21. 21.
    M. J. Hill and A. Keller, J. Macromol. Sci., Phys. B3(l), 153 (1969).Google Scholar
  22. 22.
    M. J. Hill and A. Keller, J. Macromol. Sci., Phys., B5(3), 591 (1971).Google Scholar
  23. 23.
    T. W. Haas and B. Maxwell, J. Appl. Sci., 14(9), 2407 (1970).CrossRefGoogle Scholar
  24. 24.
    R. R. Lagasse and B. Maxwell, Poly. Eng. Sci., 16(3), 189 (1976).CrossRefGoogle Scholar
  25. 25.
    T. W. Haas and B. Maxwell, Poly. Eng. Sci., 9(4), 225 (1969).CrossRefGoogle Scholar
  26. 26.
    A. K. Fritzsche and F. P. Price, Poly. Eng. Sci., 14(6), 401 (1974).CrossRefGoogle Scholar
  27. 27.
    A. K. Fritzsche, F. P. Price, and R. D. Ulrich, Poly. Eng. Sci., 16(3), 182 (1976).CrossRefGoogle Scholar
  28. 28.
    D. Krueger and G.S.-Y. Yeh, J. Appl. Phys., 43(11), 4339 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    V. Tan and C. Gogos, Poly. Eng. Sci., 16(7), 510 (1976).CrossRefGoogle Scholar
  30. 30.
    M. Wolkowicz, J. Poly. Sci., Poly. Symp., 63, 365 (1978)CrossRefGoogle Scholar
  31. 31.
    K. Kobayashi and T. Nagasawa, J. Macromol. Sci., Phys., B4(2), 331 (1970).Google Scholar
  32. 32.
    R. B. Williamson and W.F. Busse, J. Appl. Phys., 38(11), 4187 (1967).ADSCrossRefGoogle Scholar
  33. 33.
    A. Peterlin, Makromol. Chem., 44, 338 (1961).CrossRefGoogle Scholar
  34. 34.
    A. Peterlin, Pure Appl. Chem., 12, 563 (1966).CrossRefGoogle Scholar
  35. 35.
    A. J. McHugh, J. Appl. Poly. Sci., 19, 125 (1975).CrossRefGoogle Scholar
  36. 36.
    G.S.-Y. Yeh, K.-Z. Hong, and D. L. Krueger, Polym. Eng. and Sci., 19, 401 (1979).CrossRefGoogle Scholar
  37. 37.
    D. Turnbull and J. C. Fisher, J. Chem. Phys., 17, 71 (1949).ADSCrossRefGoogle Scholar
  38. 38.
    D. Turnbull, J. Chem. Phys., 18, 198 (1950).ADSCrossRefGoogle Scholar
  39. 39.
    J. I. Lauritzen and J. D. Hoffman, J. Res. Nat. Bur. Stand., 64A, 73 (1960).Google Scholar
  40. 40.
    J. D. Hoffman and J. I. Lauritzen, J. Res. Nat. Bur. Stand., 65A, 297 (1961).Google Scholar
  41. 41.
    W. R. Krigbaum and R. J. Roe, J. Poly. Sci., Part A, 2, 4391 (1964).Google Scholar
  42. 42.
    P. G. Andersen and S. H. Carr, Poly. Eng. Sci., 18, 215 (1978).CrossRefGoogle Scholar
  43. 43.
    E. Baer, J. R. Collier, and D. R. Carter, SPE Transactions, 5, 22 (1965).Google Scholar
  44. 44.
    O. Abiodun, M. S. Thesis, Dept. of Chemical Engineering, Northwestern Univ., Evanston, IL, Aug. 1981.Google Scholar
  45. 45.
    M. Pucci, Ph.D. Thesis, Dept. of Matls. Sci. & Eng., Northwestern Univ., Evanston, IL, Aug. 1981.Google Scholar
  46. 46.
    T. Hill, An Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, MA, 1960.Google Scholar
  47. 47.
    H. A. Kramers, J. Chem. Phys., 14, 415 (1946).ADSCrossRefGoogle Scholar
  48. 48.
    G. Marrucci, Trans. Soc. Rheol., 16, 321 (1972).CrossRefGoogle Scholar
  49. 49.
    F. Grun and W. Kuhn, Kolloid Z., 101, 248 (1942).CrossRefGoogle Scholar
  50. 50.
    H. Janeschitz-Kriegl, Adv. Polym. Sci., 6, 170 (1969).CrossRefGoogle Scholar
  51. 51.
    A. S. Lodge, Elastic Liquids, Academic Press, NY, 1964.Google Scholar
  52. 52.
    W. E. Rochefort, G. G. Smith, H. Rachapudy, V. R. Raju, and W. W. Graessley, J. Polym. Sci., Polym. Phys. Edn., 17, 1197 (1979).ADSCrossRefGoogle Scholar
  53. 53.
    H. Rachapudy, G. G. Smith, V. R. Raju, and W. W. Graessley, J. Polym. Sci., Polym. Phys. Edn., 17, 1211 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Mark S. Pucci
    • 1
  • Stephen H. Carr
    • 1
  1. 1.Department of Materials Science and Engineering and Materials Research CenterNorthwestern UniversityEvanstonUSA

Personalised recommendations