Crystal Transformation, Piezoelectricity, and Ferroelectric Polarization Reversal in Poly(Vinylidene Fluoride)

  • Kasumi Matsushige
  • Tetuo Takemura
Part of the Polymer Science and Technology book series


The mechanisms for the II-I crystal transformation in poly(vinyl-idene fluoride) (PVDF) by various procedures were studied with a PSPC (position sensitive proportional counter) X-ray system. Simultaneous X-ray and stress-strain relationship measurements during a drawing procedure revealed that the crystal transformation from Form II to Form I always initiates at the deformation stage where a necking was completed at the center of tensile samples, thus suggesting that a heterogeneous stress distribution in the sample plays a critically important role. High pressure X-ray experiments on a heating process exhibited that this polymer transforms from Form II to folded-chain Form I and then extended-chain Form I crystals before melting. The II-I crystal transformation was also observed to proceed with an activation energy of 30 kcal/mol on an annealing procedure at 4000 kg/cm2. Furthermore, a uniaxial compressional deformation and a drawing at high pressures were observed to cause this II-I crystal transformation. These phenomena were utilized to prepare the Form I samples with a high degree of crystal perfection and to improve considerably their piezoelectric properties. Finally, ferroelectric polarization switching experiments were carried out for Form I crystal films in wide ranges of temperature and pressure. The switching current behavior at atmospheric pressure changed remarkably at about −50°C which coincides well with the reported glass transition temperature.


Piezoelectric Property Vinylidene Fluoride Polarization Switching Amorphous Part Ferroelectric Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. D. Kondrashov, Gipkh’a, 46, 166 (1960).Google Scholar
  2. 2.
    Ye. L. Gal’Perin, Yu. V. Strogalin, and M.P. Mlenik, Vysokomol. Soedin., 7, 933 (1965).Google Scholar
  3. 3.
    N. I. Makarevich and V. N. Nikitin, Vysokomol. Soedin., 7, 1673 (1965).Google Scholar
  4. 4.
    J. B. Lando, H. G. Olf, and A. Peterlin, J. Polym. Sci., A-1, 4, 941 (1966).CrossRefGoogle Scholar
  5. 5.
    W. W. Doll and J. B. Lando, J. Macromol. Sci., Phys., B2, 219 (1968); ibid. B4, 889 (1970).Google Scholar
  6. 6.
    R. Hasegawa, M. Kobayashi, and H. Tadokoro, Polymer J., 3, 591 (1972).CrossRefGoogle Scholar
  7. 7.
    R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadokoro, Polymer J., 3, 300 (1972).Google Scholar
  8. 8.
    M. Kobayashi, K. Tashiro, and H. Tadokoro, Macromolecules, 8, 158 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    K. Matsushige and T. Takemura, J. Polym. Sci., Phys. Ed., 16, 921 (1978).CrossRefGoogle Scholar
  10. 10.
    S. Weinhold, M. H. Litt, and J. B. Lando, J. Polym. Sci., Polym. Lett. Ed., 17, 585 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    A. J. Lovinger and H. D. Keith, Macromolecules, 12, 919 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Takahasi and H. Tadokoro, Macromolecules, 13, 1317 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    P. D. Southgate, Appl. Phys. Lett., 28, 250 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    G. T. Davis, J. E. McKinney, M. G. Broadhurst, and S. C. Roth, J. Appl. Phys., 49, 4998 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    D. K. Das-Gupta and K. Doughty, J. Appl. Phys., 49, 4601 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    R. C. Kepler and R. A. Anderson, J. Appl. Phys., 49, 1232 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    B. A. Newman, C. H. Yoon, K. D. Pae, and J. I. Scheinbeim, J. Appl. Phys., 50, 6095 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    J. G. Bergman, G. R. Crane, A. A. Ballma, and H. M. O°Bryant, Jr., Appl. Phys. Lett., 21, 497 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    M. Date and E. Fukada, Rep. Prog. Polym. Phys. Jpn., 20, 339 (1977).Google Scholar
  21. 21.
    D. Naegele and D. Y. Yoon, Appl. Phys. Lett., 33, 132 (1978).ADSCrossRefGoogle Scholar
  22. 22.
    M. Tamura, K. Ogasawara, N. Ono, and S. Hagiwara, J. Appl. Phys., 45, 3768 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    M. Oshiki and E. Fukada, J. Mater. Sci., 10, 1 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    K. Ogasawara, K. Shiratori, and M. Tamura, Rep. Prog. Polym. Phys. Jpn., 19, (1976).Google Scholar
  25. 25.
    J. I. Sheinbeim, C. H. Yoon, K. D. Pae, and B. A. Newman, J. Appl. Phys., 51, 5156 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    M. G. Broadhurst, G. T. Davis, J. E. McKinney, and R. E. Collins, J. Appl. Phys., 49, 4992 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    T. Furukawa, J. Aiba, and E. Fukada, J. Appl. Phys., 50, 3615 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    R. Harakawa and Y. Wada, Adv. Polym. Sci., 11, 1 (1973).CrossRefGoogle Scholar
  29. 29.
    K. Tashiro, M. Kobayashi, H. Tadokoro, and E. Fukada, Macromolecules, 13, 691 (1980).ADSCrossRefGoogle Scholar
  30. 30.
    K. Matsushige, K. Nagata, and T. Takemura, Jpn. J. Appl. Phys., 17, 467 (1978).ADSCrossRefGoogle Scholar
  31. 31.
    K. Matsushige, K. Nagata, S. Imada, and T. Takemura, Polymer, 21, 1391 (1980).CrossRefGoogle Scholar
  32. 32.
    K. Matsushige and T. Takemura, J. Cryst. Growth, 48, 343 (1980).ADSCrossRefGoogle Scholar
  33. 33.
    K. Matsushige, S. Imada, and T. Takemura, Polymer J., 13, in press.Google Scholar
  34. 34.
    M. Yasumiwa, R. Enoshita, and T. Takemura, Jpn. J. Appl. Phys., 15, 1421 (1976).ADSCrossRefGoogle Scholar
  35. 35.
    W. J. Merz, J. Appl. Phys., 27, 938 (1956).ADSCrossRefGoogle Scholar
  36. 36.
    T. Ide, S. Taki, and T. Takemura, Jpn. J. Appl. Phys., 16, 647 (1977).ADSCrossRefGoogle Scholar
  37. 37.
    T. Goho, T. Furukawa, M. Date, T. Takamatsu, and E. Fukada, Polymer Preprints, Japan, 28, 447 (1979) (in Japanese).Google Scholar
  38. 38.
    H. H. Wieder, Phys. Rev., 110, 29 (1958).ADSCrossRefGoogle Scholar
  39. 39.
    M. Tamura, S. Hagiwara, S. Matsumoto, and N. Ono, J. Appl. Phys., 48, 513 (1977).ADSCrossRefGoogle Scholar
  40. 40.
    N. Koizumi, S. Yano, and K. Tsunashima, J. Polym. Sci., B7, 59 (1969).Google Scholar
  41. 41.
    H. Kakutani, J. Polym. Sci. A-2, 8, 1177 (1970).CrossRefGoogle Scholar
  42. 42.
    S. Yano, J. Polym. Sci., A-2 8, 1057 (1970).CrossRefGoogle Scholar
  43. 43.
    K. Nakagawa and Y. Ishida, J. Polym. Sci. Phys., Ed., 11, 1503 (1973).Google Scholar
  44. 44.
    A. K. Doolittle, J. Appl. Phys., 22, 1571 (1951); 23, 235 (1977).Google Scholar
  45. 45.
    J. D. Ferry, “Viscoelastic Properties of Polymers”, 2nd Ed., John Wiley (1970).Google Scholar
  46. 46.
    K. Matsushige, S. Imada, and T. Takemura, unpublished data.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Kasumi Matsushige
    • 1
  • Tetuo Takemura
    • 1
  1. 1.Department of Applied Science, Faculty of EngineeringKyushu UniversityHakozaki, Higashi-ku, Fukuoka, 812Japan

Personalised recommendations