The Interaction of Liquid Environments with Hard Elastic High Impact Polystyrene

  • Kim Walton
  • Abdelsamie Moet
  • Eric Baer
Part of the Polymer Science and Technology book series


The hard-elastic behavior exhibited by specially prepared polymers has been under intensive investigation since its patenting in the mid-1960’s [1]. Recently, the phenomenology of hard elasticity in crystalline polymers has been thoroughly reviewed by Sprague [2] and more recently, Cannon, McKenna and Statton [3]. Common mechanical and physical properties of these unique materials include (a) an initial Hookean elasticity, (b) high recoverability from large strains, (c) energetic retractive forces, (d) rehealing after work softening, and (e) constant cross-sectional area during deformation.


Surface Tension Void Volume Fraction Stress Plateau Liquid Environment Stress Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Celanese Corporation of America, “Filamentous Material and a Process for its Manufacture”, Belgium Pat. 650, 890 (January, 1965).Google Scholar
  2. 2.
    B. S. Sprague, “Relationship of Structure and Morphology to Properties of Hard Elastic Fibers and Films”, in “The Solid State of Polymers”, edited by P. H. Geil, E. Baer, Y. Wada, Marcel Dekker, Inc., New York (1974).Google Scholar
  3. 3.
    S. L. Cannon, G. B. McKenna and W. O. Statton, Macromol. Rev., 11, 209 (1976).CrossRefGoogle Scholar
  4. 4.
    M. J. Miles and E. Baer, J. Mater. Sci., 14, 1254 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    A. Moet, I. Palley and E. Baer, J. Appl. Phys., 51, 5175 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    M. E. Mackay, T. G. Teng and J. M. Schultz, J. Mater. Sci., 14, 221 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    P. Beahan, M. Bevis and D. Hull, Proc. R. Soc. Lond. A 343, 525 (1975).ADSGoogle Scholar
  8. 8.
    L. Peters and H. J. Woods, in “The Mechanical Properties of Textile Fibers”, ed. by R. Meredith, Interscience Publishers, Inc., N.Y. (1956).Google Scholar
  9. 9.
    T. Inoue, M. Moritani, T. Hashimoto and H. Kawai, Macromolecules, 4, 500 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    J. Diamant and M. Shen, Polymer Preprints, 20(1), 250, ACS, April (1979).Google Scholar
  11. 11.
    M. J. Miles, J. Petermann and H. Gleiter, J. Macromol. Sci.-Phys., B12(4), 523 (1976).Google Scholar
  12. 12.
    A. W. Adamson, Physical Chemistry of Surfaces, Interscience Publishers, Inc., N.Y., p. 75 (1967).Google Scholar
  13. 13.
    J. Brandrup and E. H. Immergat, ed., Polymer Handbook, III-221 (1975).Google Scholar
  14. 14.
    H. R. Brown and E. J. Kramer, “Craze Microstructure from Small Angle X-ray Scattering (SAXS)”, Report #4253, Dept. Mater. Sci. and Engineering, Cornell University (1980).Google Scholar
  15. 15.
    R. P. Kambour, C. L. Gruner and E. E. Romagosa, J. Polym. Sci.-Phys., 11, 1879 (1973).CrossRefGoogle Scholar
  16. 16.
    H. R. Brown, private communication.Google Scholar
  17. 17.
    E. Paredes and E. W. Fisher, Makromol. Chemie, 180, 2707 (1979).CrossRefGoogle Scholar
  18. 18.
    S. Natou and K. Azauma, J. Macromol. Sci.-Phys., B16(3), 435 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Kim Walton
    • 1
  • Abdelsamie Moet
    • 1
  • Eric Baer
    • 1
  1. 1.Department of Macromolecular Science, Case Institute of TechnologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations